File size: 23,345 Bytes
00db68b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d2973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import csv
import io
import json
import math
import os
import random
from threading import Thread

import albumentations
import cv2
import gc
import numpy as np
import torch
import torchvision.transforms as transforms

from func_timeout import func_timeout, FunctionTimedOut
from decord import VideoReader
from PIL import Image
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset
from contextlib import contextmanager

VIDEO_READER_TIMEOUT = 20

def get_random_mask(shape):
    f, c, h, w = shape
    
    if f != 1:
        mask_index = np.random.choice([0, 1, 2, 3, 4], p = [0.05, 0.3, 0.3, 0.3, 0.05]) # np.random.randint(0, 5)
    else:
        mask_index = np.random.choice([0, 1], p = [0.2, 0.8]) # np.random.randint(0, 2)
    mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)

    if mask_index == 0:
        center_x = torch.randint(0, w, (1,)).item()
        center_y = torch.randint(0, h, (1,)).item()
        block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
        block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

        start_x = max(center_x - block_size_x // 2, 0)
        end_x = min(center_x + block_size_x // 2, w)
        start_y = max(center_y - block_size_y // 2, 0)
        end_y = min(center_y + block_size_y // 2, h)
        mask[:, :, start_y:end_y, start_x:end_x] = 1
    elif mask_index == 1:
        mask[:, :, :, :] = 1
    elif mask_index == 2:
        mask_frame_index = np.random.randint(1, 5)
        mask[mask_frame_index:, :, :, :] = 1
    elif mask_index == 3:
        mask_frame_index = np.random.randint(1, 5)
        mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
    elif mask_index == 4:
        center_x = torch.randint(0, w, (1,)).item()
        center_y = torch.randint(0, h, (1,)).item()
        block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item()  # 方块的宽度范围
        block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item()  # 方块的高度范围

        start_x = max(center_x - block_size_x // 2, 0)
        end_x = min(center_x + block_size_x // 2, w)
        start_y = max(center_y - block_size_y // 2, 0)
        end_y = min(center_y + block_size_y // 2, h)

        mask_frame_before = np.random.randint(0, f // 2)
        mask_frame_after = np.random.randint(f // 2, f)
        mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
    else:
        raise ValueError(f"The mask_index {mask_index} is not define")
    return mask

class ImageVideoSampler(BatchSampler):
    """A sampler wrapper for grouping images with similar aspect ratio into a same batch.

    Args:
        sampler (Sampler): Base sampler.
        dataset (Dataset): Dataset providing data information.
        batch_size (int): Size of mini-batch.
        drop_last (bool): If ``True``, the sampler will drop the last batch if
            its size would be less than ``batch_size``.
        aspect_ratios (dict): The predefined aspect ratios.
    """

    def __init__(self,
                 sampler: Sampler,
                 dataset: Dataset,
                 batch_size: int,
                 drop_last: bool = False
                ) -> None:
        if not isinstance(sampler, Sampler):
            raise TypeError('sampler should be an instance of ``Sampler``, '
                            f'but got {sampler}')
        if not isinstance(batch_size, int) or batch_size <= 0:
            raise ValueError('batch_size should be a positive integer value, '
                             f'but got batch_size={batch_size}')
        self.sampler = sampler
        self.dataset = dataset
        self.batch_size = batch_size
        self.drop_last = drop_last

        # buckets for each aspect ratio
        self.bucket = {'image':[], 'video':[]}

    def __iter__(self):
        for idx in self.sampler:
            content_type = self.dataset.dataset[idx].get('type', 'image')
            self.bucket[content_type].append(idx)

            # yield a batch of indices in the same aspect ratio group
            if len(self.bucket['video']) == self.batch_size:
                bucket = self.bucket['video']
                yield bucket[:]
                del bucket[:]
            elif len(self.bucket['image']) == self.batch_size:
                bucket = self.bucket['image']
                yield bucket[:]
                del bucket[:]

@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
    vr = VideoReader(*args, **kwargs)
    try:
        yield vr
    finally:
        del vr
        gc.collect()

def get_video_reader_batch(video_reader, batch_index):
    frames = video_reader.get_batch(batch_index).asnumpy()
    return frames

def resize_frame(frame, target_short_side):
    h, w, _ = frame.shape
    if h < w:
        if target_short_side > h:
            return frame
        new_h = target_short_side
        new_w = int(target_short_side * w / h)
    else:
        if target_short_side > w:
            return frame
        new_w = target_short_side
        new_h = int(target_short_side * h / w)
    
    resized_frame = cv2.resize(frame, (new_w, new_h))
    return resized_frame

class ImageVideoDataset(Dataset):
    def __init__(
            self,
            ann_path, data_root=None,
            video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16,
            image_sample_size=512,
            video_repeat=0,
            text_drop_ratio=-1,
            enable_bucket=False,
            video_length_drop_start=0.1, 
            video_length_drop_end=0.9,
            enable_inpaint=False,
        ):
        # Loading annotations from files
        print(f"loading annotations from {ann_path} ...")
        if ann_path.endswith('.csv'):
            with open(ann_path, 'r') as csvfile:
                dataset = list(csv.DictReader(csvfile))
        elif ann_path.endswith('.json'):
            dataset = json.load(open(ann_path))
    
        self.data_root = data_root

        # It's used to balance num of images and videos.
        self.dataset = []
        for data in dataset:
            if data.get('type', 'image') != 'video':
                self.dataset.append(data)
        if video_repeat > 0:
            for _ in range(video_repeat):
                for data in dataset:
                    if data.get('type', 'image') == 'video':
                        self.dataset.append(data)
        del dataset

        self.length = len(self.dataset)
        print(f"data scale: {self.length}")
        # TODO: enable bucket training
        self.enable_bucket = enable_bucket
        self.text_drop_ratio = text_drop_ratio
        self.enable_inpaint  = enable_inpaint

        self.video_length_drop_start = video_length_drop_start
        self.video_length_drop_end = video_length_drop_end

        # Video params
        self.video_sample_stride    = video_sample_stride
        self.video_sample_n_frames  = video_sample_n_frames
        self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size)
        self.video_transforms = transforms.Compose(
            [
                transforms.Resize(min(self.video_sample_size)),
                transforms.CenterCrop(self.video_sample_size),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )

        # Image params
        self.image_sample_size  = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size)
        self.image_transforms   = transforms.Compose([
            transforms.Resize(min(self.image_sample_size)),
            transforms.CenterCrop(self.image_sample_size),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
        ])

        self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size))

    def get_batch(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        
        if data_info.get('type', 'image')=='video':
            video_id, text = data_info['file_path'], data_info['text']

            if self.data_root is None:
                video_dir = video_id
            else:
                video_dir = os.path.join(self.data_root, video_id)

            with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
                min_sample_n_frames = min(
                    self.video_sample_n_frames, 
                    int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride)
                )
                if min_sample_n_frames == 0:
                    raise ValueError(f"No Frames in video.")

                video_length = int(self.video_length_drop_end * len(video_reader))
                clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1)
                start_idx   = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0
                batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int)

                try:
                    sample_args = (video_reader, batch_index)
                    pixel_values = func_timeout(
                        VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
                    )
                    resized_frames = []
                    for i in range(len(pixel_values)):
                        frame = pixel_values[i]
                        resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
                        resized_frames.append(resized_frame)
                    pixel_values = np.array(resized_frames)
                except FunctionTimedOut:
                    raise ValueError(f"Read {idx} timeout.")
                except Exception as e:
                    raise ValueError(f"Failed to extract frames from video. Error is {e}.")

                if not self.enable_bucket:
                    pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
                    pixel_values = pixel_values / 255.
                    del video_reader
                else:
                    pixel_values = pixel_values

                if not self.enable_bucket:
                    pixel_values = self.video_transforms(pixel_values)
                
                # Random use no text generation
                if random.random() < self.text_drop_ratio:
                    text = ''
            return pixel_values, text, 'video'
        else:
            image_path, text = data_info['file_path'], data_info['text']
            if self.data_root is not None:
                image_path = os.path.join(self.data_root, image_path)
            image = Image.open(image_path).convert('RGB')
            if not self.enable_bucket:
                image = self.image_transforms(image).unsqueeze(0)
            else:
                image = np.expand_dims(np.array(image), 0)
            if random.random() < self.text_drop_ratio:
                text = ''
            return image, text, 'image'

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        data_type = data_info.get('type', 'image')
        while True:
            sample = {}
            try:
                data_info_local = self.dataset[idx % len(self.dataset)]
                data_type_local = data_info_local.get('type', 'image')
                if data_type_local != data_type:
                    raise ValueError("data_type_local != data_type")

                pixel_values, name, data_type = self.get_batch(idx)
                sample["pixel_values"] = pixel_values
                sample["text"] = name
                sample["data_type"] = data_type
                sample["idx"] = idx
                
                if len(sample) > 0:
                    break
            except Exception as e:
                print(e, self.dataset[idx % len(self.dataset)])
                idx = random.randint(0, self.length-1)

        if self.enable_inpaint and not self.enable_bucket:
            mask = get_random_mask(pixel_values.size())
            mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
            sample["mask_pixel_values"] = mask_pixel_values
            sample["mask"] = mask

            clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous()
            clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
            sample["clip_pixel_values"] = clip_pixel_values

            ref_pixel_values = sample["pixel_values"][0].unsqueeze(0)
            if (mask == 1).all():
                ref_pixel_values = torch.ones_like(ref_pixel_values) * -1
            sample["ref_pixel_values"] = ref_pixel_values

        return sample


class ImageVideoControlDataset(Dataset):
    def __init__(
            self,
            ann_path, data_root=None,
            video_sample_size=512, video_sample_stride=4, video_sample_n_frames=16,
            image_sample_size=512,
            video_repeat=0,
            text_drop_ratio=-1,
            enable_bucket=False,
            video_length_drop_start=0.1, 
            video_length_drop_end=0.9,
            enable_inpaint=False,
    ):
        # Loading annotations from files
        print(f"loading annotations from {ann_path} ...")
        if ann_path.endswith('.csv'):
            with open(ann_path, 'r') as csvfile:
                dataset = list(csv.DictReader(csvfile))
        elif ann_path.endswith('.json'):
            dataset = json.load(open(ann_path))
    
        self.data_root = data_root

        # It's used to balance num of images and videos.
        self.dataset = []
        for data in dataset:
            if data.get('type', 'image') != 'video':
                self.dataset.append(data)
        if video_repeat > 0:
            for _ in range(video_repeat):
                for data in dataset:
                    if data.get('type', 'image') == 'video':
                        self.dataset.append(data)
        del dataset

        self.length = len(self.dataset)
        print(f"data scale: {self.length}")
        # TODO: enable bucket training
        self.enable_bucket = enable_bucket
        self.text_drop_ratio = text_drop_ratio
        self.enable_inpaint  = enable_inpaint

        self.video_length_drop_start = video_length_drop_start
        self.video_length_drop_end = video_length_drop_end

        # Video params
        self.video_sample_stride    = video_sample_stride
        self.video_sample_n_frames  = video_sample_n_frames
        self.video_sample_size = tuple(video_sample_size) if not isinstance(video_sample_size, int) else (video_sample_size, video_sample_size)
        self.video_transforms = transforms.Compose(
            [
                transforms.Resize(min(self.video_sample_size)),
                transforms.CenterCrop(self.video_sample_size),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
            ]
        )

        # Image params
        self.image_sample_size  = tuple(image_sample_size) if not isinstance(image_sample_size, int) else (image_sample_size, image_sample_size)
        self.image_transforms   = transforms.Compose([
            transforms.Resize(min(self.image_sample_size)),
            transforms.CenterCrop(self.image_sample_size),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5],[0.5, 0.5, 0.5])
        ])

        self.larger_side_of_image_and_video = max(min(self.image_sample_size), min(self.video_sample_size))
    
    def get_batch(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        video_id, control_video_id, text = data_info['file_path'], data_info['control_file_path'], data_info['text']

        if data_info.get('type', 'image')=='video':
            if self.data_root is None:
                video_dir = video_id
            else:
                video_dir = os.path.join(self.data_root, video_id)

            with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
                min_sample_n_frames = min(
                    self.video_sample_n_frames, 
                    int(len(video_reader) * (self.video_length_drop_end - self.video_length_drop_start) // self.video_sample_stride)
                )
                if min_sample_n_frames == 0:
                    raise ValueError(f"No Frames in video.")

                video_length = int(self.video_length_drop_end * len(video_reader))
                clip_length = min(video_length, (min_sample_n_frames - 1) * self.video_sample_stride + 1)
                start_idx   = random.randint(int(self.video_length_drop_start * video_length), video_length - clip_length) if video_length != clip_length else 0
                batch_index = np.linspace(start_idx, start_idx + clip_length - 1, min_sample_n_frames, dtype=int)

                try:
                    sample_args = (video_reader, batch_index)
                    pixel_values = func_timeout(
                        VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
                    )
                    resized_frames = []
                    for i in range(len(pixel_values)):
                        frame = pixel_values[i]
                        resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
                        resized_frames.append(resized_frame)
                    pixel_values = np.array(resized_frames)
                except FunctionTimedOut:
                    raise ValueError(f"Read {idx} timeout.")
                except Exception as e:
                    raise ValueError(f"Failed to extract frames from video. Error is {e}.")

                if not self.enable_bucket:
                    pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
                    pixel_values = pixel_values / 255.
                    del video_reader
                else:
                    pixel_values = pixel_values

                if not self.enable_bucket:
                    pixel_values = self.video_transforms(pixel_values)
                
                # Random use no text generation
                if random.random() < self.text_drop_ratio:
                    text = ''

            if self.data_root is None:
                control_video_id = control_video_id
            else:
                control_video_id = os.path.join(self.data_root, control_video_id)
            
            with VideoReader_contextmanager(control_video_id, num_threads=2) as control_video_reader:
                try:
                    sample_args = (control_video_reader, batch_index)
                    control_pixel_values = func_timeout(
                        VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
                    )
                    resized_frames = []
                    for i in range(len(control_pixel_values)):
                        frame = control_pixel_values[i]
                        resized_frame = resize_frame(frame, self.larger_side_of_image_and_video)
                        resized_frames.append(resized_frame)
                    control_pixel_values = np.array(resized_frames)
                except FunctionTimedOut:
                    raise ValueError(f"Read {idx} timeout.")
                except Exception as e:
                    raise ValueError(f"Failed to extract frames from video. Error is {e}.")

                if not self.enable_bucket:
                    control_pixel_values = torch.from_numpy(control_pixel_values).permute(0, 3, 1, 2).contiguous()
                    control_pixel_values = control_pixel_values / 255.
                    del control_video_reader
                else:
                    control_pixel_values = control_pixel_values

                if not self.enable_bucket:
                    control_pixel_values = self.video_transforms(control_pixel_values)
            return pixel_values, control_pixel_values, text, "video"
        else:
            image_path, text = data_info['file_path'], data_info['text']
            if self.data_root is not None:
                image_path = os.path.join(self.data_root, image_path)
            image = Image.open(image_path).convert('RGB')
            if not self.enable_bucket:
                image = self.image_transforms(image).unsqueeze(0)
            else:
                image = np.expand_dims(np.array(image), 0)

            if random.random() < self.text_drop_ratio:
                text = ''

            if self.data_root is None:
                control_image_id = control_image_id
            else:
                control_image_id = os.path.join(self.data_root, control_image_id)

            control_image = Image.open(control_image_id).convert('RGB')
            if not self.enable_bucket:
                control_image = self.image_transforms(control_image).unsqueeze(0)
            else:
                control_image = np.expand_dims(np.array(control_image), 0)
            return image, control_image, text, 'image'

    def __len__(self):
        return self.length

    def __getitem__(self, idx):
        data_info = self.dataset[idx % len(self.dataset)]
        data_type = data_info.get('type', 'image')
        while True:
            sample = {}
            try:
                data_info_local = self.dataset[idx % len(self.dataset)]
                data_type_local = data_info_local.get('type', 'image')
                if data_type_local != data_type:
                    raise ValueError("data_type_local != data_type")

                pixel_values, control_pixel_values, name, data_type = self.get_batch(idx)
                sample["pixel_values"] = pixel_values
                sample["control_pixel_values"] = control_pixel_values
                sample["text"] = name
                sample["data_type"] = data_type
                sample["idx"] = idx
                
                if len(sample) > 0:
                    break
            except Exception as e:
                print(e, self.dataset[idx % len(self.dataset)])
                idx = random.randint(0, self.length-1)

        if self.enable_inpaint and not self.enable_bucket:
            mask = get_random_mask(pixel_values.size())
            mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
            sample["mask_pixel_values"] = mask_pixel_values
            sample["mask"] = mask

            clip_pixel_values = sample["pixel_values"][0].permute(1, 2, 0).contiguous()
            clip_pixel_values = (clip_pixel_values * 0.5 + 0.5) * 255
            sample["clip_pixel_values"] = clip_pixel_values

            ref_pixel_values = sample["pixel_values"][0].unsqueeze(0)
            if (mask == 1).all():
                ref_pixel_values = torch.ones_like(ref_pixel_values) * -1
            sample["ref_pixel_values"] = ref_pixel_values

        return sample