bubbliiiing
update to v1.1
14d2973
import io
import gc
import base64
import torch
import gradio as gr
import tempfile
import hashlib
import os
from fastapi import FastAPI
from io import BytesIO
from PIL import Image
# Function to encode a file to Base64
def encode_file_to_base64(file_path):
with open(file_path, "rb") as file:
# Encode the data to Base64
file_base64 = base64.b64encode(file.read())
return file_base64
def update_edition_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/cogvideox_fun/update_edition")
def _update_edition_api(
datas: dict,
):
edition = datas.get('edition', 'v2')
try:
controller.update_edition(
edition
)
comment = "Success"
except Exception as e:
torch.cuda.empty_cache()
comment = f"Error. error information is {str(e)}"
return {"message": comment}
def update_diffusion_transformer_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/cogvideox_fun/update_diffusion_transformer")
def _update_diffusion_transformer_api(
datas: dict,
):
diffusion_transformer_path = datas.get('diffusion_transformer_path', 'none')
try:
controller.update_diffusion_transformer(
diffusion_transformer_path
)
comment = "Success"
except Exception as e:
torch.cuda.empty_cache()
comment = f"Error. error information is {str(e)}"
return {"message": comment}
def save_base64_video(base64_string):
video_data = base64.b64decode(base64_string)
md5_hash = hashlib.md5(video_data).hexdigest()
filename = f"{md5_hash}.mp4"
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as video_file:
video_file.write(video_data)
return file_path
def save_base64_image(base64_string):
video_data = base64.b64decode(base64_string)
md5_hash = hashlib.md5(video_data).hexdigest()
filename = f"{md5_hash}.jpg"
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, filename)
with open(file_path, 'wb') as video_file:
video_file.write(video_data)
return file_path
def infer_forward_api(_: gr.Blocks, app: FastAPI, controller):
@app.post("/cogvideox_fun/infer_forward")
def _infer_forward_api(
datas: dict,
):
base_model_path = datas.get('base_model_path', 'none')
lora_model_path = datas.get('lora_model_path', 'none')
lora_alpha_slider = datas.get('lora_alpha_slider', 0.55)
prompt_textbox = datas.get('prompt_textbox', None)
negative_prompt_textbox = datas.get('negative_prompt_textbox', 'The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. ')
sampler_dropdown = datas.get('sampler_dropdown', 'Euler')
sample_step_slider = datas.get('sample_step_slider', 30)
resize_method = datas.get('resize_method', "Generate by")
width_slider = datas.get('width_slider', 672)
height_slider = datas.get('height_slider', 384)
base_resolution = datas.get('base_resolution', 512)
is_image = datas.get('is_image', False)
generation_method = datas.get('generation_method', False)
length_slider = datas.get('length_slider', 49)
overlap_video_length = datas.get('overlap_video_length', 4)
partial_video_length = datas.get('partial_video_length', 72)
cfg_scale_slider = datas.get('cfg_scale_slider', 6)
start_image = datas.get('start_image', None)
end_image = datas.get('end_image', None)
validation_video = datas.get('validation_video', None)
validation_video_mask = datas.get('validation_video_mask', None)
control_video = datas.get('control_video', None)
denoise_strength = datas.get('denoise_strength', 0.70)
seed_textbox = datas.get("seed_textbox", 43)
generation_method = "Image Generation" if is_image else generation_method
if start_image is not None:
start_image = base64.b64decode(start_image)
start_image = [Image.open(BytesIO(start_image))]
if end_image is not None:
end_image = base64.b64decode(end_image)
end_image = [Image.open(BytesIO(end_image))]
if validation_video is not None:
validation_video = save_base64_video(validation_video)
if validation_video_mask is not None:
validation_video_mask = save_base64_image(validation_video_mask)
if control_video is not None:
control_video = save_base64_video(control_video)
try:
save_sample_path, comment = controller.generate(
"",
base_model_path,
lora_model_path,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
resize_method,
width_slider,
height_slider,
base_resolution,
generation_method,
length_slider,
overlap_video_length,
partial_video_length,
cfg_scale_slider,
start_image,
end_image,
validation_video,
validation_video_mask,
control_video,
denoise_strength,
seed_textbox,
is_api = True,
)
except Exception as e:
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
save_sample_path = ""
comment = f"Error. error information is {str(e)}"
return {"message": comment}
if save_sample_path != "":
return {"message": comment, "save_sample_path": save_sample_path, "base64_encoding": encode_file_to_base64(save_sample_path)}
else:
return {"message": comment, "save_sample_path": save_sample_path}