# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import os import json import torch import glob import torch.nn.functional as F from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import is_torch_version, logging from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.attention import Attention, FeedForward from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 from diffusers.models.embeddings import TimestepEmbedding, Timesteps, get_3d_sincos_pos_embed from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero logger = logging.get_logger(__name__) # pylint: disable=invalid-name class CogVideoXPatchEmbed(nn.Module): def __init__( self, patch_size: int = 2, in_channels: int = 16, embed_dim: int = 1920, text_embed_dim: int = 4096, bias: bool = True, ) -> None: super().__init__() self.patch_size = patch_size self.proj = nn.Conv2d( in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias ) self.text_proj = nn.Linear(text_embed_dim, embed_dim) def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): r""" Args: text_embeds (`torch.Tensor`): Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). image_embeds (`torch.Tensor`): Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). """ text_embeds = self.text_proj(text_embeds) batch, num_frames, channels, height, width = image_embeds.shape image_embeds = image_embeds.reshape(-1, channels, height, width) image_embeds = self.proj(image_embeds) image_embeds = image_embeds.view(batch, num_frames, *image_embeds.shape[1:]) image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] embeds = torch.cat( [text_embeds, image_embeds], dim=1 ).contiguous() # [batch, seq_length + num_frames x height x width, channels] return embeds @maybe_allow_in_graph class CogVideoXBlock(nn.Module): r""" Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. time_embed_dim (`int`): The number of channels in timestep embedding. dropout (`float`, defaults to `0.0`): The dropout probability to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. qk_norm (`bool`, defaults to `True`): Whether or not to use normalization after query and key projections in Attention. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, defaults to `1e-5`): Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*, defaults to `None`): Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in Feed-forward layer. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in Attention output projection layer. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, time_embed_dim: int, dropout: float = 0.0, activation_fn: str = "gelu-approximate", attention_bias: bool = False, qk_norm: bool = True, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = True, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() # 1. Self Attention self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.attn1 = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=attention_bias, out_bias=attention_out_bias, processor=CogVideoXAttnProcessor2_0(), ) # 2. Feed Forward self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( hidden_states, encoder_hidden_states, temb ) # attention attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + gate_msa * attn_hidden_states encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( hidden_states, encoder_hidden_states, temb ) # feed-forward norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] return hidden_states, encoder_hidden_states class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin): """ A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). Parameters: num_attention_heads (`int`, defaults to `30`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `16`): The number of channels in the output. flip_sin_to_cos (`bool`, defaults to `True`): Whether to flip the sin to cos in the time embedding. time_embed_dim (`int`, defaults to `512`): Output dimension of timestep embeddings. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. num_layers (`int`, defaults to `30`): The number of layers of Transformer blocks to use. dropout (`float`, defaults to `0.0`): The dropout probability to use. attention_bias (`bool`, defaults to `True`): Whether or not to use bias in the attention projection layers. sample_width (`int`, defaults to `90`): The width of the input latents. sample_height (`int`, defaults to `60`): The height of the input latents. sample_frames (`int`, defaults to `49`): The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. temporal_compression_ratio (`int`, defaults to `4`): The compression ratio across the temporal dimension. See documentation for `sample_frames`. max_text_seq_length (`int`, defaults to `226`): The maximum sequence length of the input text embeddings. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. timestep_activation_fn (`str`, defaults to `"silu"`): Activation function to use when generating the timestep embeddings. norm_elementwise_affine (`bool`, defaults to `True`): Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-5`): The epsilon value to use in normalization layers. spatial_interpolation_scale (`float`, defaults to `1.875`): Scaling factor to apply in 3D positional embeddings across spatial dimensions. temporal_interpolation_scale (`float`, defaults to `1.0`): Scaling factor to apply in 3D positional embeddings across temporal dimensions. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 30, attention_head_dim: int = 64, in_channels: int = 16, out_channels: Optional[int] = 16, flip_sin_to_cos: bool = True, freq_shift: int = 0, time_embed_dim: int = 512, text_embed_dim: int = 4096, num_layers: int = 30, dropout: float = 0.0, attention_bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, patch_size: int = 2, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, activation_fn: str = "gelu-approximate", timestep_activation_fn: str = "silu", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_rotary_positional_embeddings: bool = False, add_noise_in_inpaint_model: bool = False, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim post_patch_height = sample_height // patch_size post_patch_width = sample_width // patch_size post_time_compression_frames = (sample_frames - 1) // temporal_compression_ratio + 1 self.num_patches = post_patch_height * post_patch_width * post_time_compression_frames self.post_patch_height = post_patch_height self.post_patch_width = post_patch_width self.post_time_compression_frames = post_time_compression_frames self.patch_size = patch_size # 1. Patch embedding self.patch_embed = CogVideoXPatchEmbed(patch_size, in_channels, inner_dim, text_embed_dim, bias=True) self.embedding_dropout = nn.Dropout(dropout) # 2. 3D positional embeddings spatial_pos_embedding = get_3d_sincos_pos_embed( inner_dim, (post_patch_width, post_patch_height), post_time_compression_frames, spatial_interpolation_scale, temporal_interpolation_scale, ) spatial_pos_embedding = torch.from_numpy(spatial_pos_embedding).flatten(0, 1) pos_embedding = torch.zeros(1, max_text_seq_length + self.num_patches, inner_dim, requires_grad=False) pos_embedding.data[:, max_text_seq_length:].copy_(spatial_pos_embedding) self.register_buffer("pos_embedding", pos_embedding, persistent=False) # 3. Time embeddings self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) # 4. Define spatio-temporal transformers blocks self.transformer_blocks = nn.ModuleList( [ CogVideoXBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, dropout=dropout, activation_fn=activation_fn, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for _ in range(num_layers) ] ) self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) # 5. Output blocks self.norm_out = AdaLayerNorm( embedding_dim=time_embed_dim, output_dim=2 * inner_dim, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, chunk_dim=1, ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: Union[int, float, torch.LongTensor], timestep_cond: Optional[torch.Tensor] = None, inpaint_latents: Optional[torch.Tensor] = None, control_latents: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, return_dict: bool = True, ): batch_size, num_frames, channels, height, width = hidden_states.shape # 1. Time embedding timesteps = timestep t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_embedding(t_emb, timestep_cond) # 2. Patch embedding if inpaint_latents is not None: hidden_states = torch.concat([hidden_states, inpaint_latents], 2) if control_latents is not None: hidden_states = torch.concat([hidden_states, control_latents], 2) hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # 3. Position embedding text_seq_length = encoder_hidden_states.shape[1] if not self.config.use_rotary_positional_embeddings: seq_length = height * width * num_frames // (self.config.patch_size**2) # pos_embeds = self.pos_embedding[:, : text_seq_length + seq_length] pos_embeds = self.pos_embedding emb_size = hidden_states.size()[-1] pos_embeds_without_text = pos_embeds[:, text_seq_length: ].view(1, self.post_time_compression_frames, self.post_patch_height, self.post_patch_width, emb_size) pos_embeds_without_text = pos_embeds_without_text.permute([0, 4, 1, 2, 3]) pos_embeds_without_text = F.interpolate(pos_embeds_without_text,size=[self.post_time_compression_frames, height // self.config.patch_size, width // self.config.patch_size],mode='trilinear',align_corners=False) pos_embeds_without_text = pos_embeds_without_text.permute([0, 2, 3, 4, 1]).view(1, -1, emb_size) pos_embeds = torch.cat([pos_embeds[:, :text_seq_length], pos_embeds_without_text], dim = 1) pos_embeds = pos_embeds[:, : text_seq_length + seq_length] hidden_states = hidden_states + pos_embeds hidden_states = self.embedding_dropout(hidden_states) encoder_hidden_states = hidden_states[:, :text_seq_length] hidden_states = hidden_states[:, text_seq_length:] # 4. Transformer blocks for i, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, emb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, image_rotary_emb=image_rotary_emb, ) if not self.config.use_rotary_positional_embeddings: # CogVideoX-2B hidden_states = self.norm_final(hidden_states) else: # CogVideoX-5B hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states = self.norm_final(hidden_states) hidden_states = hidden_states[:, text_seq_length:] # 5. Final block hidden_states = self.norm_out(hidden_states, temb=emb) hidden_states = self.proj_out(hidden_states) # 6. Unpatchify p = self.config.patch_size output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, channels, p, p) output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) @classmethod def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, transformer_additional_kwargs={}): if subfolder is not None: pretrained_model_path = os.path.join(pretrained_model_path, subfolder) print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...") config_file = os.path.join(pretrained_model_path, 'config.json') if not os.path.isfile(config_file): raise RuntimeError(f"{config_file} does not exist") with open(config_file, "r") as f: config = json.load(f) from diffusers.utils import WEIGHTS_NAME model = cls.from_config(config, **transformer_additional_kwargs) model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) model_file_safetensors = model_file.replace(".bin", ".safetensors") if os.path.exists(model_file): state_dict = torch.load(model_file, map_location="cpu") elif os.path.exists(model_file_safetensors): from safetensors.torch import load_file, safe_open state_dict = load_file(model_file_safetensors) else: from safetensors.torch import load_file, safe_open model_files_safetensors = glob.glob(os.path.join(pretrained_model_path, "*.safetensors")) state_dict = {} for model_file_safetensors in model_files_safetensors: _state_dict = load_file(model_file_safetensors) for key in _state_dict: state_dict[key] = _state_dict[key] if model.state_dict()['patch_embed.proj.weight'].size() != state_dict['patch_embed.proj.weight'].size(): new_shape = model.state_dict()['patch_embed.proj.weight'].size() if len(new_shape) == 5: state_dict['patch_embed.proj.weight'] = state_dict['patch_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone() state_dict['patch_embed.proj.weight'][:, :, :-1] = 0 else: if model.state_dict()['patch_embed.proj.weight'].size()[1] > state_dict['patch_embed.proj.weight'].size()[1]: model.state_dict()['patch_embed.proj.weight'][:, :state_dict['patch_embed.proj.weight'].size()[1], :, :] = state_dict['patch_embed.proj.weight'] model.state_dict()['patch_embed.proj.weight'][:, state_dict['patch_embed.proj.weight'].size()[1]:, :, :] = 0 state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] else: model.state_dict()['patch_embed.proj.weight'][:, :, :, :] = state_dict['patch_embed.proj.weight'][:, :model.state_dict()['patch_embed.proj.weight'].size()[1], :, :] state_dict['patch_embed.proj.weight'] = model.state_dict()['patch_embed.proj.weight'] tmp_state_dict = {} for key in state_dict: if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size(): tmp_state_dict[key] = state_dict[key] else: print(key, "Size don't match, skip") state_dict = tmp_state_dict m, u = model.load_state_dict(state_dict, strict=False) print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") print(m) params = [p.numel() if "mamba" in n else 0 for n, p in model.named_parameters()] print(f"### Mamba Parameters: {sum(params) / 1e6} M") params = [p.numel() if "attn1." in n else 0 for n, p in model.named_parameters()] print(f"### attn1 Parameters: {sum(params) / 1e6} M") return model