Spaces:
Runtime error
Runtime error
File size: 11,980 Bytes
4f080ef 400f630 856992b 4f080ef 856992b 4f080ef 176c5c4 677fb85 4f080ef 856992b 400f630 247b542 400f630 247b542 1cbd49d e81255a 1cbd49d 647ad37 21b46b0 1cbd49d 400f630 647ad37 247b542 400f630 647ad37 247b542 dd129c7 2e2d93f 20ed735 cbe7532 20ed735 f13ca78 e1995dc f13ca78 20ed735 cbe7532 20ed735 8663c93 20ed735 092e598 f13ca78 20ed735 2e2d93f d24830e 860d7ef 20ed735 e51c702 20ed735 e51c702 f1aa734 f13ca78 20ed735 e51c702 20ed735 4f080ef 2e2d93f 4f080ef 20ed735 4f080ef 20ed735 d24830e 4f080ef d24830e 4f080ef ba22e9c 4f080ef ba22e9c 4f080ef d24830e 4f080ef 8606620 4f080ef 247b542 4f080ef 247b542 4f080ef 247b542 4f080ef 20ed735 4f080ef 20ed735 4f080ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
from datetime import datetime
#from models import models
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it",
"openchat/openchat-3.5-0106",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"JunRyeol/jr_model",
"bigcode/starcoder2-15b",
]
def test_models():
log_box=[]
for model in models:
start_time = datetime.now()
try:
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=128,
top_p=0.9,
repetition_penalty=1.0,
do_sample=True,
seed=111111111,
)
print(f'trying: {model}\n')
client= InferenceClient(model)
outp=""
stream=client.text_generation("What is a cat", **generate_kwargs, stream=True, details=True, return_full_text=True)
for response in stream:
outp += response.token.text
print (outp)
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
#if time_delta.total_seconds() >= 180:
log = {"Model":model,"Status":"Success","Output":outp, "Time":count}
print(f'{log}\n')
log_box.append(log)
except Exception as e:
time_delta = datetime.now() - start_time
count=time_delta.total_seconds()
log = {"Model":model,"Status":"Error","Output":e,"Time":count}
print(f'{log}\n')
log_box.append(log)
yield log_box
def format_prompt_default(message, history,cust_p):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
print(prompt)
prompt += f"{bot_response}\n"
print(prompt)
#prompt += f"{message}\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_gemma(message, history,cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_openc(message, history,cust_p):
#prompt = "GPT4 Correct User: "
prompt=""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}"
prompt += f"<|end_of_turn|>"
prompt += f"GPT4 Correct Assistant: "
prompt += f"{bot_response}"
prompt += f"<|end_of_turn|>"
print(prompt)
#GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_mixtral(message, history,cust_p):
prompt = "<s>"
if history:
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
#prompt += f"[INST] {message} [/INST]"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def format_prompt_choose(message, history, cust_p, model_name):
if "gemma" in models[model_name].lower():
return format_prompt_gemma(message,history,cust_p)
if "mixtral" in models[model_name].lower():
return format_prompt_mixtral(message,history,cust_p)
if "openchat" in models[model_name].lower():
return format_prompt_openc(message,history,cust_p)
else:
return format_prompt_default(message,history,cust_p)
def load_models(inp):
print(type(inp))
print(inp)
print(models[inp])
model_state= InferenceClient(models[inp])
out_box=gr.update(label=models[inp])
if "gemma" in models[inp].lower():
prompt_out="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model"
return out_box,prompt_out, model_state
if "mixtral" in models[inp].lower():
prompt_out="[INST] USER_INPUT [/INST]"
return out_box,prompt_out, model_state
if "openchat" in models[inp].lower():
prompt_out="GPT4 Correct User: USER_INPUT<|end_of_turn|>GPT4 Correct Assistant: "
return out_box,prompt_out, model_state
else:
prompt_out="USER_INPUT\n"
return out_box,prompt_out, model_state
VERBOSE=False
def load_models_OG(inp):
if VERBOSE==True:
print(type(inp))
print(inp)
print(models[inp])
#client_z.clear()
#client_z.append(InferenceClient(models[inp]))
return gr.update(label=models[inp])
def format_prompt(message, history, cust_p):
prompt = ""
if history:
for user_prompt, bot_response in history:
prompt += f"<start_of_turn>user{user_prompt}<end_of_turn>"
prompt += f"<start_of_turn>model{bot_response}<end_of_turn>"
if VERBOSE==True:
print(prompt)
#prompt += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
prompt+=cust_p.replace("USER_INPUT",message)
return prompt
def chat_inf(system_prompt,prompt,history,memory,model_state,model_name,seed,temp,tokens,top_p,rep_p,chat_mem,cust_p):
#token max=8192
model_n=models[model_name]
print(model_state)
hist_len=0
client=model_state
if not history:
history = []
hist_len=0
if not memory:
memory = []
mem_len=0
if memory:
for ea in memory[0-chat_mem:]:
hist_len+=len(str(ea))
in_len=len(system_prompt+prompt)+hist_len
if (in_len+tokens) > 8000:
history.append((prompt,"Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value"))
yield history,memory
else:
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
if system_prompt:
formatted_prompt = format_prompt_choose(f"{system_prompt}, {prompt}", memory[0-chat_mem:],cust_p,model_name)
else:
formatted_prompt = format_prompt_choose(prompt, memory[0-chat_mem:],cust_p,model_name)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)],memory
history.append((prompt,output))
memory.append((prompt,output))
yield history,memory
if VERBOSE==True:
print("\n######### HIST "+str(in_len))
print("\n######### TOKENS "+str(tokens))
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
model_state=gr.State()
memory=gr.State()
gr.HTML("""<center><h1 style='font-size:xx-large;'>Huggingface Hub InferenceClient</h1><br><h3>Chatbot's</h3></center>""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Accordion("Prompt Format",open=False):
custom_prompt=gr.Textbox(label="Modify Prompt Format", info="For testing purposes. 'USER_INPUT' is where 'SYSTEM_PROMPT, PROMPT' will be placed", lines=3,value="<start_of_turn>userUSER_INPUT<end_of_turn><start_of_turn>model")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
test_btn=gr.Button("Test")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=1600,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.49)
rep_p=gr.Slider(label="Repetition Penalty",step=0.01, minimum=0.1, maximum=2.0, value=0.99)
chat_mem=gr.Number(label="Chat Memory", info="Number of previous chats to retain",value=4)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
test_json=gr.JSON(label="Test Output")
test_btn.click(test_models,None,test_json)
client_choice.change(load_models,client_choice,[chat_b,custom_prompt,model_state])
app.load(load_models,client_choice,[chat_b,custom_prompt,model_state])
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,memory,model_state,client_choice,seed,temp,tokens,top_p,rep_p,chat_mem,custom_prompt],[chat_b,memory])
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b,memory])
app.queue(default_concurrency_limit=10).launch() |