""" Build txtai workflows. Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py """ import os import nltk import yaml import pandas as pd import streamlit as st from txtai.embeddings import Documents, Embeddings from txtai.pipeline import Segmentation, Summary, Tabular, Textractor, Translation from txtai.workflow import ServiceTask, Task, UrlTask, Workflow class Process: """ Container for an active Workflow process instance. """ @staticmethod @st.cache_data(ttl=60 * 60, max_entries=3, allow_output_mutation=True, show_spinner=False) def get(components, data): """ Lookup or creates a new workflow process instance. Args: components: input components data: initial data, only passed when indexing Returns: Process """ process = Process(data) # Build workflow with st.spinner("Building workflow...."): process.build(components) return process def __init__(self, data): """ Creates a new Process. Args: data: initial data, only passed when indexing """ # Component options self.components = {} # Defined pipelines self.pipelines = {} # Current workflow self.workflow = [] # Embeddings index params self.embeddings = None self.documents = None self.data = data def build(self, components): """ Builds a workflow using components. Args: components: list of components to add to workflow """ # pylint: disable=W0108 tasks = [] for component in components: component = dict(component) wtype = component.pop("type") self.components[wtype] = component if wtype == "embeddings": self.embeddings = Embeddings({**component}) self.documents = Documents() tasks.append(Task(self.documents.add, unpack=False)) elif wtype == "segmentation": self.pipelines[wtype] = Segmentation(**self.components[wtype]) tasks.append(Task(self.pipelines[wtype])) elif wtype == "service": tasks.append(ServiceTask(**self.components[wtype])) elif wtype == "summary": self.pipelines[wtype] = Summary(component.pop("path")) tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"]))) elif wtype == "tabular": self.pipelines[wtype] = Tabular(**self.components[wtype]) tasks.append(Task(self.pipelines[wtype])) elif wtype == "textractor": self.pipelines[wtype] = Textractor(**self.components[wtype]) tasks.append(UrlTask(self.pipelines[wtype])) elif wtype == "translation": self.pipelines[wtype] = Translation() tasks.append(Task(lambda x: self.pipelines["translation"](x, **self.components["translation"]))) self.workflow = Workflow(tasks) def run(self, data): """ Runs a workflow using data as input. Args: data: input data """ if data and self.workflow: # Build tuples for embedding index if self.documents: data = [(x, element, None) for x, element in enumerate(data)] # Process workflow for result in self.workflow(data): if not self.documents: st.write(result) # Build embeddings index if self.documents: # Cache data self.data = list(self.documents) with st.spinner("Building embedding index...."): self.embeddings.index(self.documents) self.documents.close() # Clear workflow self.documents, self.pipelines, self.workflow = None, None, None def search(self, query): """ Runs a search. Args: query: input query """ if self.embeddings and query: st.markdown( """ """, unsafe_allow_html=True, ) limit = min(5, len(self.data)) results = [] for result in self.embeddings.search(query, limit): # Tuples are returned when an index doesn't have stored content if isinstance(result, tuple): uid, score = result results.append({"text": self.find(uid), "score": f"{score:.2}"}) else: if "id" in result and "text" in result: result["text"] = self.content(result.pop("id"), result["text"]) if "score" in result and result["score"]: result["score"] = f'{result["score"]:.2}' results.append(result) df = pd.DataFrame(results) st.write(df.to_html(escape=False), unsafe_allow_html=True) def find(self, key): """ Lookup record from cached data by uid key. Args: key: id to search for Returns: text for matching id """ # Lookup text by id text = [text for uid, text, _ in self.data if uid == key][0] return self.content(key, text) def content(self, uid, text): """ Builds a content reference for uid and text. Args: uid: record id text: record text Returns: content """ if uid and uid.lower().startswith("http"): return f"{text}" return text class Application: """ Main application. """ def __init__(self, directory): """ Creates a new application. """ # Workflow configuration directory self.directory = directory def default(self, names): """ Gets default workflow index. Args: names: list of workflow names Returns: default workflow index """ # Get names as lowercase to match case-insensitive lnames = [name.lower() for name in names] # Get default workflow param params = st.experimental_get_query_params() index = params.get("default") index = index[0].lower() if index else 0 # Lookup index of workflow name, add 1 to account for "--" if index and index in lnames: return lnames.index(index) + 1 # Workflow not found, default to index 0 return 0 def load(self, components): """ Load an existing workflow file. Args: components: list of components to load Returns: (names of components loaded, workflow config) """ with open(os.path.join(self.directory, "config.yml"), encoding="utf-8") as f: config = yaml.safe_load(f) names = [row["name"] for row in config] files = [row["file"] for row in config] selected = st.selectbox("Load workflow", ["--"] + names, self.default(names)) if selected != "--": index = [x for x, name in enumerate(names) if name == selected][0] with open(os.path.join(self.directory, files[index]), encoding="utf-8") as f: workflow = yaml.safe_load(f) st.markdown("---") # Get tasks for first workflow tasks = list(workflow["workflow"].values())[0]["tasks"] selected = [] for task in tasks: name = task.get("action", task.get("task")) if name in components: selected.append(name) elif name in ["index", "upsert"]: selected.append("embeddings") return (selected, workflow) return (None, None) def state(self, key): """ Lookup a session state variable. Args: key: variable key Returns: variable value """ if key in st.session_state: return st.session_state[key] return None def appsetting(self, workflow, name): """ Looks up an application configuration setting. Args: workflow: workflow configuration name: setting name Returns: app setting value """ if workflow: config = workflow.get("app") if config: return config.get(name) return None def setting(self, config, name, default=None): """ Looks up a component configuration setting. Args: config: component configuration name: setting name default: default setting value Returns: setting value """ return config.get(name, default) if config else default def text(self, label, component, config, name, default=None): """ Create a new text input field. Args: label: field label component: component name config: component configuration name: setting name default: default setting value Returns: text input field value """ default = self.setting(config, name, default) if not default: default = "" elif isinstance(default, list): default = ",".join(default) elif isinstance(default, dict): default = ",".join(default.keys()) st.caption(label) st.code(default, language="yaml") return default def number(self, label, component, config, name, default=None): """ Creates a new numeric input field. Args: label: field label component: component name config: component configuration name: setting name default: default setting value Returns: numeric value """ value = self.text(label, component, config, name, default) return int(value) if value else None def boolean(self, label, component, config, name, default=False): """ Creates a new checkbox field. Args: label: field label component: component name config: component configuration name: setting name default: default setting value Returns: boolean value """ default = self.setting(config, name, default) st.caption(label) st.markdown(":white_check_mark:" if default else ":white_large_square:") return default def select(self, label, component, config, name, options, default=0): """ Creates a new select box field. Args: label: field label component: component name config: component configuration name: setting name options: list of dropdown options default: default setting value Returns: boolean value """ index = self.setting(config, name) index = [x for x, option in enumerate(options) if option == default] # Derive default index default = index[0] if index else default st.caption(label) st.code(options[default], language="yaml") return options[default] def split(self, text): """ Splits text on commas and returns a list. Args: text: input text Returns: list """ return [x.strip() for x in text.split(",")] def options(self, component, workflow, index): """ Extracts component settings into a component configuration dict. Args: component: component type workflow: existing workflow, can be None index: task index Returns: dict with component settings """ # pylint: disable=R0912, R0915 options = {"type": component} # Lookup component configuration # - Runtime components have config defined within tasks # - Pipeline components have config defined at workflow root config = None if workflow: if component in ["service", "translation"]: # Service config is found in tasks section tasks = list(workflow["workflow"].values())[0]["tasks"] tasks = [task for task in tasks if task.get("task") == component or task.get("action") == component] if tasks: config = tasks[0] else: config = workflow.get(component) if component == "embeddings": st.markdown(f"** {index + 1}.) Embeddings Index** \n*Index workflow output*") options["path"] = self.text("Embeddings model path", component, config, "path", "sentence-transformers/nli-mpnet-base-v2") options["upsert"] = self.boolean("Upsert", component, config, "upsert") options["content"] = self.boolean("Content", component, config, "content") elif component in ("segmentation", "textractor"): if component == "segmentation": st.markdown(f"** {index + 1}.) Segment** \n*Split text into semantic units*") else: st.markdown(f"** {index + 1}.) Textract** \n*Extract text from documents*") options["sentences"] = self.boolean("Split sentences", component, config, "sentences") options["lines"] = self.boolean("Split lines", component, config, "lines") options["paragraphs"] = self.boolean("Split paragraphs", component, config, "paragraphs") options["join"] = self.boolean("Join tokenized", component, config, "join") options["minlength"] = self.number("Min section length", component, config, "minlength") elif component == "service": st.markdown(f"** {index + 1}.) Service** \n*Extract data from an API*") options["url"] = self.text("URL", component, config, "url") options["method"] = self.select("Method", component, config, "method", ["get", "post"], 0) options["params"] = self.text("URL parameters", component, config, "params") options["batch"] = self.boolean("Run as batch", component, config, "batch", True) options["extract"] = self.text("Subsection(s) to extract", component, config, "extract") if options["params"]: options["params"] = {key: None for key in self.split(options["params"])} if options["extract"]: options["extract"] = self.split(options["extract"]) elif component == "summary": st.markdown(f"** {index + 1}.) Summary** \n*Abstractive text summarization*") options["path"] = self.text("Model", component, config, "path", "sshleifer/distilbart-cnn-12-6") options["minlength"] = self.number("Min length", component, config, "minlength") options["maxlength"] = self.number("Max length", component, config, "maxlength") elif component == "tabular": st.markdown(f"** {index + 1}.) Tabular** \n*Split tabular data into rows and columns*") options["idcolumn"] = self.text("Id columns", component, config, "idcolumn") options["textcolumns"] = self.text("Text columns", component, config, "textcolumns") options["content"] = self.text("Content", component, config, "content") if options["textcolumns"]: options["textcolumns"] = self.split(options["textcolumns"]) if options["content"]: options["content"] = self.split(options["content"]) if len(options["content"]) == 1 and options["content"][0] == "1": options["content"] = options["content"][0] elif component == "translation": st.markdown(f"** {index + 1}.) Translate** \n*Machine translation*") options["target"] = self.text("Target language code", component, config, "args", "en") st.markdown("---") return options def yaml(self, components): """ Builds a yaml string for components. Args: components: list of components to export to YAML Returns: (workflow name, YAML string) """ data = {"app": {"data": self.state("data"), "query": self.state("query")}} tasks = [] name = None for component in components: component = dict(component) name = wtype = component.pop("type") if wtype == "embeddings": upsert = component.pop("upsert") data[wtype] = component data["writable"] = True name = "index" tasks.append({"action": "upsert" if upsert else "index"}) elif wtype == "segmentation": data[wtype] = component tasks.append({"action": wtype}) elif wtype == "service": config = dict(**component) config["task"] = wtype tasks.append(config) elif wtype == "summary": data[wtype] = {"path": component.pop("path")} tasks.append({"action": wtype}) elif wtype == "tabular": data[wtype] = component tasks.append({"action": wtype}) elif wtype == "textractor": data[wtype] = component tasks.append({"action": wtype, "task": "url"}) elif wtype == "translation": data[wtype] = {} tasks.append({"action": wtype, "args": list(component.values())}) # Add in workflow data["workflow"] = {name: {"tasks": tasks}} return (name, yaml.dump(data)) def data(self, workflow): """ Gets input data. Args: workflow: workflow configuration Returns: input data """ # Get default data setting data = self.appsetting(workflow, "data") if not self.appsetting(workflow, "query"): data = st.text_input("Input", value=data) # Save data state st.session_state["data"] = data # Wrap data as list for workflow processing return [data] def query(self, workflow, index): """ Gets input query. Args: workflow: workflow configuration index: True if this is an indexing workflow Returns: input query """ default = self.appsetting(workflow, "query") default = default if default else "" # Get query if this is an indexing workflow query = st.text_input("Query", value=default) if index else None # Save query state st.session_state["query"] = query return query def process(self, workflow, components, index): """ Processes the current application action. Args: workflow: workflow configuration components: workflow components index: True if this is an indexing workflow """ # Get input data and initialize query data = self.data(workflow) query = self.query(workflow, index) # Get workflow process process = Process.get(components, data if index else None) # Run workflow process process.run(data) # Run search if index: process.search(query) def run(self): """ Runs Streamlit application. """ with st.sidebar: st.markdown("# Workflow builder \n*Build and apply workflows to data* ") st.markdown("Test workflows for Station. Read more about used data on [Hugging Face](https://huggingface.co/datasets/ag_news) and in the [Docs](https://neuml.github.io/txtai/workflow/).") st.markdown("---") # Component configuration components = ["embeddings", "segmentation", "service", "summary", "tabular", "textractor", "translation"] selected, workflow = self.load(components) if selected: # Get selected options components = [self.options(component, workflow, x) for x, component in enumerate(selected)] if selected: # Process current action self.process(workflow, components, "embeddings" in selected) with st.sidebar: # Generate export button after workflow is complete _, config = self.yaml(components) st.download_button("Export", config, file_name="workflow.yml", help="Export the API workflow as YAML") else: st.info("Select a workflow from the sidebar") if __name__ == "__main__": os.environ["TOKENIZERS_PARALLELISM"] = "false" # pylint: disable=W0702 try: nltk.sent_tokenize("This is a test. Split") except: nltk.download("punkt") # Create and run application app = Application("workflows") app.run()