TIPO-DEMO / diff.py
Kohaku-Blueleaf
remove xformers
ff3b374
raw
history blame
4.42 kB
from functools import partial
import torch
from diffusers import StableDiffusionXLKDiffusionPipeline, UNet2DConditionModel
from k_diffusion.sampling import get_sigmas_polyexponential
from k_diffusion.sampling import sample_dpmpp_2m_sde
torch.set_float32_matmul_precision("medium")
def set_timesteps_polyexponential(self, orig_sigmas, num_inference_steps, device=None):
self.num_inference_steps = num_inference_steps
self.sigmas = get_sigmas_polyexponential(
num_inference_steps + 1,
sigma_min=orig_sigmas[-2],
sigma_max=orig_sigmas[0],
rho=0.666666,
device=device or "cpu",
)
self.sigmas = torch.cat([self.sigmas[:-2], self.sigmas.new_zeros([1])])
def model_forward(k_diffusion_model: torch.nn.Module):
orig_forward = k_diffusion_model.forward
def forward(*args, **kwargs):
with torch.autocast(device_type="cuda", dtype=torch.float16):
result = orig_forward(*args, **kwargs)
return result.float()
return forward
def load_model(model_id="KBlueLeaf/Kohaku-XL-Zeta", device="cuda"):
pipe: StableDiffusionXLKDiffusionPipeline
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
model_id, torch_dtype=torch.float16
).to(device)
unet: UNet2DConditionModel = pipe.k_diffusion_model.inner_model.model
pipe.scheduler.set_timesteps = partial(
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
)
pipe.sampler = partial(sample_dpmpp_2m_sde, eta=0.35, solver_type="heun")
pipe.k_diffusion_model.forward = model_forward(pipe.k_diffusion_model)
return pipe
def encode_prompts(pipe: StableDiffusionXLKDiffusionPipeline, prompt, neg_prompt):
max_length = pipe.tokenizer.model_max_length
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
input_ids2 = pipe.tokenizer_2(prompt, return_tensors="pt").input_ids.to("cuda")
negative_ids = pipe.tokenizer(
neg_prompt,
truncation=False,
padding="max_length",
max_length=input_ids.shape[-1],
return_tensors="pt",
).input_ids.to("cuda")
negative_ids2 = pipe.tokenizer_2(
neg_prompt,
truncation=False,
padding="max_length",
max_length=input_ids.shape[-1],
return_tensors="pt",
).input_ids.to("cuda")
if negative_ids.size() > input_ids.size():
input_ids = pipe.tokenizer(
prompt,
truncation=False,
padding="max_length",
max_length=negative_ids.shape[-1],
return_tensors="pt",
).input_ids.to("cuda")
input_ids2 = pipe.tokenizer_2(
prompt,
truncation=False,
padding="max_length",
max_length=negative_ids.shape[-1],
return_tensors="pt",
).input_ids.to("cuda")
concat_embeds = []
neg_embeds = []
for i in range(0, input_ids.shape[-1], max_length):
concat_embeds.append(pipe.text_encoder(input_ids[:, i : i + max_length])[0])
neg_embeds.append(pipe.text_encoder(negative_ids[:, i : i + max_length])[0])
concat_embeds2 = []
neg_embeds2 = []
pooled_embeds2 = []
neg_pooled_embeds2 = []
for i in range(0, input_ids.shape[-1], max_length):
hidden_states = pipe.text_encoder_2(
input_ids2[:, i : i + max_length], output_hidden_states=True
)
concat_embeds2.append(hidden_states.hidden_states[-2])
pooled_embeds2.append(hidden_states[0])
hidden_states = pipe.text_encoder_2(
negative_ids2[:, i : i + max_length], output_hidden_states=True
)
neg_embeds2.append(hidden_states.hidden_states[-2])
neg_pooled_embeds2.append(hidden_states[0])
prompt_embeds = torch.cat(concat_embeds, dim=1)
negative_prompt_embeds = torch.cat(neg_embeds, dim=1)
prompt_embeds2 = torch.cat(concat_embeds2, dim=1)
negative_prompt_embeds2 = torch.cat(neg_embeds2, dim=1)
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds2], dim=-1)
negative_prompt_embeds = torch.cat(
[negative_prompt_embeds, negative_prompt_embeds2], dim=-1
)
pooled_embeds2 = torch.mean(torch.stack(pooled_embeds2, dim=0), dim=0)
neg_pooled_embeds2 = torch.mean(torch.stack(neg_pooled_embeds2, dim=0), dim=0)
return prompt_embeds, negative_prompt_embeds, pooled_embeds2, neg_pooled_embeds2