Kohaku-Blueleaf
commited on
Commit
•
a3ce076
1
Parent(s):
7fdb61e
updates some detail
Browse files
app.py
CHANGED
@@ -53,10 +53,10 @@ DEFAULT_FORMAT = """<|special|>, <|characters|>, <|copyrights|>,
|
|
53 |
<|quality|>, <|meta|>, <|rating|>
|
54 |
""".strip()
|
55 |
DEFAULT_TAGS = """
|
56 |
-
1girl,
|
57 |
-
ningen mame, ciloranko,
|
58 |
-
solo,
|
59 |
-
masterpiece, absurdres,
|
60 |
""".strip()
|
61 |
DEFAULT_NL = """
|
62 |
An illustration of a girl
|
@@ -228,7 +228,7 @@ TITPOP
|
|
228 |
target_length = gr.Dropdown(
|
229 |
label="Target Length",
|
230 |
choices=["very_short", "short", "long", "very_long"],
|
231 |
-
value="
|
232 |
)
|
233 |
temp = gr.Slider(
|
234 |
label="Temp",
|
|
|
53 |
<|quality|>, <|meta|>, <|rating|>
|
54 |
""".strip()
|
55 |
DEFAULT_TAGS = """
|
56 |
+
1girl, king halo (umamusume), umamusume,
|
57 |
+
ningen mame, ciloranko, ogipote, misu kasumi,
|
58 |
+
solo, leaning forward, sky,
|
59 |
+
masterpiece, absurdres, sensitive, newest
|
60 |
""".strip()
|
61 |
DEFAULT_NL = """
|
62 |
An illustration of a girl
|
|
|
228 |
target_length = gr.Dropdown(
|
229 |
label="Target Length",
|
230 |
choices=["very_short", "short", "long", "very_long"],
|
231 |
+
value="long",
|
232 |
)
|
233 |
temp = gr.Slider(
|
234 |
label="Temp",
|
diff.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from functools import partial
|
2 |
|
3 |
import torch
|
4 |
-
from diffusers import StableDiffusionXLKDiffusionPipeline
|
5 |
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
|
@@ -37,6 +37,8 @@ def load_model(model_id="KBlueLeaf/Kohaku-XL-Zeta", device="cuda"):
|
|
37 |
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
38 |
model_id, torch_dtype=torch.float16
|
39 |
).to(device)
|
|
|
|
|
40 |
pipe.scheduler.set_timesteps = partial(
|
41 |
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
42 |
)
|
|
|
1 |
from functools import partial
|
2 |
|
3 |
import torch
|
4 |
+
from diffusers import StableDiffusionXLKDiffusionPipeline, UNet2DConditionModel
|
5 |
from k_diffusion.sampling import get_sigmas_polyexponential
|
6 |
from k_diffusion.sampling import sample_dpmpp_2m_sde
|
7 |
|
|
|
37 |
pipe = StableDiffusionXLKDiffusionPipeline.from_pretrained(
|
38 |
model_id, torch_dtype=torch.float16
|
39 |
).to(device)
|
40 |
+
unet: UNet2DConditionModel = pipe.k_diffusion_model.inner_model.model
|
41 |
+
unet.enable_xformers_memory_efficient_attention()
|
42 |
pipe.scheduler.set_timesteps = partial(
|
43 |
set_timesteps_polyexponential, pipe.scheduler, pipe.scheduler.sigmas
|
44 |
)
|