Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
from speechbrain.pretrained import EncoderClassifier, Tacotron2, HIFIGAN, ASR
|
4 |
+
import os
|
5 |
+
import soundfile as sf
|
6 |
+
|
7 |
+
# Ensure output directory exists
|
8 |
+
os.makedirs("output_audio", exist_ok=True)
|
9 |
+
|
10 |
+
# Load models
|
11 |
+
encoder = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", savedir="models/encoder")
|
12 |
+
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="models/tacotron2")
|
13 |
+
hifigan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="models/hifigan")
|
14 |
+
asr = ASR.from_hparams(source="speechbrain/asr-transformer-librispeech", savedir="models/asr")
|
15 |
+
|
16 |
+
def speech_to_text(input_audio):
|
17 |
+
sig, sr = torchaudio.load(input_audio)
|
18 |
+
transcription = asr.transcribe_file(input_audio)
|
19 |
+
return transcription
|
20 |
+
|
21 |
+
def speech_to_speech(input_audio, target_text):
|
22 |
+
# Load and encode speaker from input audio
|
23 |
+
signal, fs = torchaudio.load(input_audio)
|
24 |
+
if fs != 16000:
|
25 |
+
signal = torchaudio.transforms.Resample(orig_freq=fs, new_freq=16000)(signal)
|
26 |
+
embedding = encoder.encode_batch(signal)
|
27 |
+
|
28 |
+
# Synthesize speech from text
|
29 |
+
mel_output, mel_length, alignment = tacotron2.encode_text(target_text, embedding)
|
30 |
+
waveform = hifigan.decode_batch(mel_output)
|
31 |
+
|
32 |
+
# Save output audio
|
33 |
+
output_path = "output_audio/synthesized_speech.wav"
|
34 |
+
sf.write(output_path, waveform.squeeze().cpu().numpy(), 22050)
|
35 |
+
return output_path
|
36 |
+
|
37 |
+
def text_to_speech(text):
|
38 |
+
mel_output, mel_length, alignment = tacotron2.encode_text(text)
|
39 |
+
waveform = hifigan.decode_batch(mel_output)
|
40 |
+
|
41 |
+
output_path = "output_audio/text_to_speech.wav"
|
42 |
+
sf.write(output_path, waveform.squeeze().cpu().numpy(), 22050)
|
43 |
+
return output_path
|
44 |
+
|
45 |
+
iface = gr.Interface(
|
46 |
+
fn={
|
47 |
+
"Speech to Text": speech_to_text,
|
48 |
+
"Text to Speech": text_to_speech,
|
49 |
+
"Speech to Speech": speech_to_speech
|
50 |
+
},
|
51 |
+
inputs={
|
52 |
+
"Speech to Text": gr.inputs.Audio(source="upload", type="file"),
|
53 |
+
"Text to Speech": gr.inputs.Textbox(label="Text"),
|
54 |
+
"Speech to Speech": [gr.inputs.Audio(source="upload", type="file"), gr.inputs.Textbox(label="Target Text")]
|
55 |
+
},
|
56 |
+
outputs={
|
57 |
+
"Speech to Text": gr.outputs.Textbox(label="Transcription"),
|
58 |
+
"Text to Speech": gr.outputs.Audio(type="file", label="Synthesized Speech"),
|
59 |
+
"Speech to Speech": gr.outputs.Audio(type="file", label="Synthesized Speech")
|
60 |
+
},
|
61 |
+
title="Speech Processing App",
|
62 |
+
description="Upload an audio file or enter text to perform various speech processing tasks.",
|
63 |
+
layout="vertical"
|
64 |
+
)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
iface.launch()
|