Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,13 +3,25 @@ import torch
|
|
| 3 |
from torch import nn
|
| 4 |
from torchvision import models, transforms
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Load the ResNet50 model
|
| 8 |
model = models.resnet50(pretrained=False) # Don't load pre-trained weights here
|
| 9 |
model.fc = nn.Linear(model.fc.in_features, 11) # Adjust the output layer to match your number of classes
|
| 10 |
|
| 11 |
-
# Load the saved model weights
|
| 12 |
-
model.load_state_dict(torch.load(
|
| 13 |
model.eval() # Set the model to evaluation mode
|
| 14 |
|
| 15 |
# Define the same preprocessing used during training
|
|
@@ -31,7 +43,14 @@ def classify_image(img):
|
|
| 31 |
|
| 32 |
# Get the label with the highest probability
|
| 33 |
top_label = probs.argmax().item() # Get the index of the highest probability
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Create the Gradio interface
|
| 37 |
iface = gr.Interface(
|
|
@@ -44,3 +63,4 @@ iface = gr.Interface(
|
|
| 44 |
|
| 45 |
# Launch the app
|
| 46 |
iface.launch()
|
|
|
|
|
|
| 3 |
from torch import nn
|
| 4 |
from torchvision import models, transforms
|
| 5 |
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# Define the model path
|
| 9 |
+
model_path = "food_classification_model.pth"
|
| 10 |
+
huggingface_model_url = "https://huggingface.co/KabeerAmjad/food_classification_model/resolve/main/food_classification_model.pth"
|
| 11 |
+
|
| 12 |
+
# Download the model from Hugging Face if it doesn't exist locally
|
| 13 |
+
if not os.path.exists(model_path):
|
| 14 |
+
import requests
|
| 15 |
+
response = requests.get(huggingface_model_url)
|
| 16 |
+
with open(model_path, "wb") as f:
|
| 17 |
+
f.write(response.content)
|
| 18 |
|
| 19 |
# Load the ResNet50 model
|
| 20 |
model = models.resnet50(pretrained=False) # Don't load pre-trained weights here
|
| 21 |
model.fc = nn.Linear(model.fc.in_features, 11) # Adjust the output layer to match your number of classes
|
| 22 |
|
| 23 |
+
# Load the saved model weights
|
| 24 |
+
model.load_state_dict(torch.load(model_path))
|
| 25 |
model.eval() # Set the model to evaluation mode
|
| 26 |
|
| 27 |
# Define the same preprocessing used during training
|
|
|
|
| 43 |
|
| 44 |
# Get the label with the highest probability
|
| 45 |
top_label = probs.argmax().item() # Get the index of the highest probability
|
| 46 |
+
|
| 47 |
+
# Map label index to the actual class name
|
| 48 |
+
label_mapping = {
|
| 49 |
+
0: "apple_pie", 1: "cheesecake", 2: "chicken_curry", 3: "french_fries",
|
| 50 |
+
4: "fried_rice", 5: "hamburger", 6: "hot_dog", 7: "ice_cream",
|
| 51 |
+
8: "omelette", 9: "pizza", 10: "sushi"
|
| 52 |
+
}
|
| 53 |
+
return label_mapping[top_label]
|
| 54 |
|
| 55 |
# Create the Gradio interface
|
| 56 |
iface = gr.Interface(
|
|
|
|
| 63 |
|
| 64 |
# Launch the app
|
| 65 |
iface.launch()
|
| 66 |
+
|