Spaces:
Sleeping
Sleeping
File size: 4,679 Bytes
4a11192 a63a8f0 e13c481 eecb24e a63a8f0 8c7d6fb a63a8f0 df2d67a 62c7d61 569e3d3 a63a8f0 16dcabb a63a8f0 e13c481 06cb9c2 a63a8f0 08800f1 80916f5 739fa1b dc1cf71 4da242e e13c481 dc1cf71 4da242e e13c481 dc1cf71 a63a8f0 e13c481 a63a8f0 16dcabb a63a8f0 a9eb656 90f5249 a63a8f0 f6a1585 90f5249 4c3f09a fb3682d f6a1585 fb3682d f6a1585 e8f35b2 c08838c e8f35b2 c08838c beef649 82b64ca e13c481 ddeee35 326497b c19881c beef649 067b45f bd595a5 c08838c a63a8f0 e13c481 a63a8f0 aacdbea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import gradio as gr
import os
import requests
import json
import base64
from io import BytesIO
from huggingface_hub import login
from PIL import Image
# myip = os.environ["0.0.0.0"]
# myport = os.environ["80"]
myip = "34.219.98.113"
myport=8000
is_spaces = True if "SPACE_ID" in os.environ else False
is_shared_ui = False
from css_html_js import custom_css
from about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
def process_image_from_binary(img_stream):
image_data = base64.b64decode(img_stream)
image_bytes = BytesIO(image_data)
img = Image.open(image_bytes)
return img
def excute_udiff(diffusion_model_id, concept, steps):
print(f"my IP is {myip}, my port is {myport}")
print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}")
response = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps})
print(f"result: {response}")
# result = result.text[1:-1]
prompt1 = ""
prompt2 = ""
img1 = None
img2 = None
if response.status_code == 200:
response_json = response.json()
print(response_json)
prompt1 = response_json['input_prompt']
prompt2 = response_json['output_prompt']
img1 = process_image_from_binary(response_json['no_attack_img'])
img2 = process_image_from_binary(response_json['attack_img'])
else:
print(f"Request failed with status code {response.status_code}")
return prompt1, prompt2, img1, img2
css = '''
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
#component-4, #component-3, #component-10{min-height: 0}
.duplicate-button img{margin: 0}
#img_1, #img_2, #img_3, #img_4{height:15rem}
#mdStyle{font-size: 0.7rem}
#titleCenter {text-align:center}
'''
with gr.Blocks(css=custom_css) as demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# gr.Markdown("# Demo of UnlearnDiffAtk.")
# gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
# # gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack),
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
# gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")
with gr.Row() as udiff:
with gr.Row():
drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage_Truck","Style-Van Gogh",
"Nudity"],
label="Unlearning undesirable concepts")
with gr.Column():
# gr.Markdown("Please upload your model id.")
drop_model = gr.Dropdown(["Erased Stable Diffusion(ESD)", "Forget-me-not(FMN)", "SemiPermeable Membrane(SPM)"],
label="Unlearned DMs")
# diffusion_model_T = gr.Textbox(label='diffusion_model_id')
# concept = gr.Textbox(label='concept')
# attacker = gr.Textbox(label='attacker')
# start_button = gr.Button("Attack!")
with gr.Column():
shown_columns_step = gr.Slider(
0, 100, value=40,
step=1, label="Attack Steps", info="Choose between 0 and 100",
interactive=True,)
with gr.Row() as attack:
with gr.Column(min_width=260):
text_input = gr.Textbox(label="Input Prompt")
orig_img = gr.Image(label="Image Generated by Input Prompt",width=260,show_share_button=False,show_download_button=False)
with gr.Column():
start_button = gr.Button("UnlearnDiffAtk!",size='lg')
with gr.Column(min_width=260):
text_ouput = gr.Textbox(label="Prompt Genetated by UnlearnDiffAtk")
result_img = gr.Image(label="Image Gnerated by Prompt of UnlearnDiffAtk",width=260,show_share_button=False,show_download_button=False)
start_button.click(fn=excute_udiff, inputs=[drop_model, drop, shown_columns_step], outputs=[text_input, text_ouput, orig_img, result_img], api_name="udiff")
demo.queue().launch(server_name='0.0.0.0') |