File size: 31,298 Bytes
b0af9aa b49d1af 828846a b0af9aa 8d5e878 b0af9aa 99dbcfa cf09c17 b0af9aa bca06e1 b0af9aa b928288 b0af9aa e4794fb 87172e2 b0af9aa 0409cf5 d7d64b2 68bf55b 2ecfd0f 68bf55b 2ecfd0f 68bf55b 2ecfd0f 68bf55b 2ecfd0f 68bf55b 2ecfd0f b0af9aa 8d5e878 828846a 8da99c0 8f429f0 8d5e878 0875cac b0af9aa 0875cac b0af9aa 0875cac b0af9aa 0875cac b0af9aa 0875cac b0af9aa 8d5e878 b0af9aa b49d1af 07bc9dc b0af9aa 7af1684 b0af9aa 7af1684 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 608f762 b0af9aa 8d5e878 b49d1af 8d5e878 828846a 8d5e878 828846a 2ddade0 8d5e878 b49d1af 828846a 8d5e878 b49d1af 55c07ee b49d1af 882d491 ee9eb0b 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 0416654 828846a 2ddade0 99dbcfa 828846a 99dbcfa 828846a 99dbcfa 828846a cf09c17 0416654 cf09c17 b49d1af bf13fb0 b49d1af 882d491 ee9eb0b 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 2ddade0 828846a 0416654 828846a 2ddade0 99dbcfa 828846a 99dbcfa 828846a 2ddade0 cf09c17 0416654 2ddade0 8d5e878 3752c3e 8d5e878 b0af9aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import streamlit as st
import random
import pandas as pd
from PIL import Image
import requests
import json
from transformers import pipeline
import numpy as np
from transformers import AutoFeatureExtractor
from transformers import AutoModelForImageClassification
import plotly.graph_objects as go
import plotly
import re
st.set_page_config(layout='wide',
page_title='Food Category Classification & Recipes Recommender'
)
st.sidebar.markdown("<h3 style='text-align: center;'>Project Location:</h3>", unsafe_allow_html=True)
st.sidebar.markdown("<p style='text-align: center;'><strong><a href='https://huggingface.co/Kaludi/food-category-classification-v2.0'>Model</a></strong> | <strong><a href='https://huggingface.co/datasets/Kaludi/food-category-classification-v2.0'>Dataset</a></strong> | <strong><a href='https://github.com/NebulaCrasher/curated-cuisine-coalition'>GitHub</a></strong></p>", unsafe_allow_html=True)
st.sidebar.markdown("<hr style='text-align: center;'>", unsafe_allow_html=True)
st.sidebar.markdown("<h3 style='text-align: center;'>Project Creators:</h3>", unsafe_allow_html=True)
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Alhamzahalabboodi'><strong>Alhamzah Alabboodi</strong></a></p>", unsafe_allow_html=True)
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/amoonguaklang12'><strong>Anderson Moonguaklang</strong></a></p>", unsafe_allow_html=True)
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/Kaludii'><strong>Bilal Kaludi</strong></a></p>", unsafe_allow_html=True)
st.sidebar.markdown("<p style='text-align: center;'><a href='https://github.com/NebulaCrasher'><strong>Davit Ksor</strong></a></p>", unsafe_allow_html=True)
def main():
st.title("Food Category Classification & Recipes Recommender")
st.markdown("This app is using a Food Category Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize **12** different categories of foods, which includes **Bread**, **Dairy**, **Dessert**, **Egg**, **Fried Food**, **Fruit**, **Meat**, **Noodles**, **Rice**, **Seafood**, **Soup**, and **Vegetable**. After classifying the category, it provides a personalized recipe recommendations based on user preferences for diet and cuisine. With its easy-to-use interface and integration with recipe databases, the app is perfect for food lovers looking for personalized recipe suggestions.")
st.header("Try it out!")
if st.checkbox("Show/Hide Examples"):
st.header("Example Images")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.image("examples/example_0.jpg", width=260)
st.image("examples/example_1.jpg", width=260)
with col2:
st.image("examples/example_2.jpg", width=260)
st.image("examples/example_3.jpg", width=260)
with col3:
st.image("examples/example_4.jpg", width=260)
st.image("examples/example_5.jpg", width=260)
with col4:
st.image("examples/example_6.jpg", width=260)
st.image("examples/example_7.jpg", width=260)
# # display the text if the checkbox returns True value
# show_images = not show_images
# if show_images:
# st.header("Example Images")
# for image in images:
# st.image(image, width=260)
# select_health = st.radio("Select One (Not Functional Yet):", ["Regular", "Low-Calorie"], horizontal=True)
# Dropdown for Diet
diet_options = ['All', 'Gluten-Free', 'Vegan', 'Vegetarian', 'Dairy-Free']
diet = st.selectbox('Diet', diet_options)
# Dropdown for Cuisine
cuisine_options = ['All', 'African', 'Asian', 'Caribbean', 'Central American', 'Europe', 'Middle Eastern', 'North American', 'Oceanic', 'South American']
cuisine = st.selectbox('Cuisine', cuisine_options)
# Slider for Calories
calories = st.slider("Select Max Calories (Per Serving)", 25, 1000, 500)
# print the calories
st.write("Selected: **{}** Max Calories.".format(calories))
uploaded_file = st.file_uploader("Upload Files", type=['png','jpeg','jpg'])
loading_text = st.empty()
if uploaded_file != None:
loading_text.markdown("Loading...")
img = Image.open(uploaded_file)
extractor = AutoFeatureExtractor.from_pretrained("Kaludi/food-category-classification-v2.0")
model = AutoModelForImageClassification.from_pretrained("Kaludi/food-category-classification-v2.0")
inputs = extractor(img, return_tensors="pt")
outputs = model(**inputs)
# ...
loading_text.empty()
label_num=outputs.logits.softmax(1).argmax(1)
label_num=label_num.item()
probs = outputs.logits.softmax(dim=1)
percentage = round(probs[0, label_num].item() * 100, 2)
st.markdown("### Your Image:")
st.image(img, width=260)
st.write("The Predicted Classification is:")
if label_num==0:
st.write("**Bread** (" + f"{percentage}%)")
elif label_num==1:
st.write("**Dairy** (" + f"{percentage}%)")
elif label_num==2:
st.write("**Dessert** (" + f"{percentage}%)")
elif label_num==3:
st.write("**Egg** (" + f"{percentage}%)")
elif label_num==4:
st.write("**Fried Food** (" + f"{percentage}%)")
elif label_num==5:
st.write("**Fruit** (" + f"{percentage}%)")
elif label_num==6:
st.write("**Meat** (" + f"{percentage}%)")
elif label_num==7:
st.write("**Noodles** (" + f"{percentage}%)")
elif label_num==8:
st.write("**Rice** (" + f"{percentage}%)")
elif label_num==9:
st.write("**Seafood** (" + f"{percentage}%)")
elif label_num==10:
st.write("**Soup** (" + f"{percentage}%)")
else:
st.write("**Vegetable** (" + f"{percentage}%)")
st.write("You Selected **{}** For Diet and **{}** For Cuisine with Max".format(diet, cuisine), calories, "Calories For", ( "**Bread**" if label_num==0 else "**Dairy**" if label_num==1 else "**Dessert**" if label_num==2 else "**Egg**" if label_num==3 else "**Fried Food**" if label_num==4 else "**Fruit**" if label_num==5 else "**Meat**" if label_num==6 else "**Noodles**" if label_num==7 else "**Rice**" if label_num==8 else "**Seafood**" if label_num==9 else "**Soup**" if label_num==10 else "**Vegetable**"))
url = "https://alcksyjrmd.execute-api.us-east-2.amazonaws.com/default/nutrients_response"
category = ("Bread" if label_num==0 else "Dairy" if label_num==1 else "Dessert" if label_num==2 else "Egg" if label_num==3 else "Fried" if label_num==4 else "Fruit" if label_num==5 else "Meat" if label_num==6 else "Noodles" if label_num==7 else "Rice" if label_num==8 else "Seafood" if label_num==9 else "**Soup**" if label_num==10 else "Vegetable")
params = {"f": category, "k": str(calories)}
if diet != "All":
params["d"] = diet
if cuisine != "All":
params["c"] = cuisine
response = requests.get(url, params=params)
response_json = json.loads(response.content)
# Convert response_json to a list
response_json = list(response_json)
if len(response_json) == 0:
st.markdown("### No Recipe Found:")
st.write("**No recipes found. Please adjust your search criteria.**")
else:
if len(response_json) > 1:
random_recipe = random.choice(response_json)
if st.button("Get Another Recipe"):
response_json.remove(random_recipe)
if len(response_json) == 0:
st.write("No more recipes. Please adjust your search criteria.")
else:
random_recipe = random.choice(response_json)
st.markdown("### Recommended Recipe:")
st.write("**Title:** ", random_recipe['Title'])
if random_recipe['Image Link'].endswith(".jpg") or random_recipe['Image Link'].endswith(".jpeg") or random_recipe['Image Link'].endswith(".png"):
st.image(random_recipe['Image Link'], width=300)
else:
st.write("**Image Link:** ", random_recipe['Image Link'])
st.write("**Rating:** ", random_recipe['Rating'])
if random_recipe['Description'] != "Description not found":
st.write("**Description:** ", random_recipe['Description'])
st.write("**Ingredients:**<br>", random_recipe['Ingredients'].replace('\n', '<br>'), unsafe_allow_html=True)
st.write("**Recipe Facts:**<br>", random_recipe['Recipe Facts'].replace('\n', '<br>'), unsafe_allow_html=True)
st.write("**Directions:**<br>", random_recipe['Directions'].replace('\n', '<br>'), unsafe_allow_html=True)
# extract only numeric values and convert mg to g
values = [
float(re.sub(r'[^\d.]+', '', random_recipe['Total Fat'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Saturated Fat'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Cholesterol'])) / 1000,
float(re.sub(r'[^\d.]+', '', random_recipe['Sodium'])) / 1000,
float(re.sub(r'[^\d.]+', '', random_recipe['Total Carbohydrate'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Dietary Fiber'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Total Sugars'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Protein'])),
float(re.sub(r'[^\d.]+', '', random_recipe['Vitamin C'])) / 1000,
float(re.sub(r'[^\d.]+', '', random_recipe['Calcium'])) / 1000,
float(re.sub(r'[^\d.]+', '', random_recipe['Iron'])) / 1000,
float(re.sub(r'[^\d.]+', '', random_recipe['Potassium'])) / 1000
]
# Create a list of daily values (DV) for each nutrient based on a 2000 calorie per day diet, all are in grams
dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7]
# Calculate the percentage of DV for each nutrient
dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)]
nutrition_html = """
<div id="nutrition-info_6-0" class="comp nutrition-info">
<table class="nutrition-info__table">
<thead>
<tr>
<th class="nutrition-info__heading" colspan="3">Number of Servings: <span class="nutrition-info__heading-aside">{servings}</span></th>
</tr>
</thead>
<tbody class="nutrition-info__table--body">
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Calories</td>
<td class="nutrition-info__table--cell">{calories}</td>
<td class="nutrition-info__table--cell"></td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Fat</td>
<td class="nutrition-info__table--cell">{total_fat}</td>
<td class="nutrition-info__table--cell">{fat_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Saturated Fat</td>
<td class="nutrition-info__table--cell">{saturated_fat}</td>
<td class="nutrition-info__table--cell">{sat_fat_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Cholesterol</td>
<td class="nutrition-info__table--cell">{cholesterol}</td>
<td class="nutrition-info__table--cell">{chol_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Sodium</td>
<td class="nutrition-info__table--cell">{sodium}</td>
<td class="nutrition-info__table--cell">{sodium_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Carbohydrate</td>
<td class="nutrition-info__table--cell">{total_carbohydrate}</td>
<td class="nutrition-info__table--cell">{carb_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Dietary Fiber</td>
<td class="nutrition-info__table--cell">{dietary_fiber}</td>
<td class="nutrition-info__table--cell">{diet_fibe_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Sugars</td>
<td class="nutrition-info__table--cell">{total_sugars}</td>
<td class="nutrition-info__table--cell">{tot_sugars_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Protein</td>
<td class="nutrition-info__table--cell">{protein}</td>
<td class="nutrition-info__table--cell">{protein_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Vitamin C</td>
<td class="nutrition-info__table--cell">{vitc}</td>
<td class="nutrition-info__table--cell">{vitc_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Calcium</td>
<td class="nutrition-info__table--cell">{calc}</td>
<td class="nutrition-info__table--cell">{calc_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Iron</td>
<td class="nutrition-info__table--cell">{iron}</td>
<td class="nutrition-info__table--cell">{iron_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Potassium</td>
<td class="nutrition-info__table--cell">{pota}</td>
<td class="nutrition-info__table--cell">{pota_percent}% DV</td>
</tr>
</tbody>
</table>
</div>
"""
# Use the nutrition HTML and format it with the values
formatted_html = nutrition_html.format(
calories=random_recipe['Calories'],
total_fat=random_recipe['Total Fat'],
saturated_fat=random_recipe['Saturated Fat'],
cholesterol=random_recipe['Cholesterol'],
sodium=random_recipe['Sodium'],
total_carbohydrate=random_recipe['Total Carbohydrate'],
dietary_fiber=random_recipe['Dietary Fiber'],
total_sugars=random_recipe['Total Sugars'],
servings=random_recipe['Number of Servings'],
vitc=random_recipe['Vitamin C'],
calc=random_recipe['Calcium'],
iron=random_recipe['Iron'],
pota=random_recipe['Potassium'],
protein=random_recipe['Protein'],
fat_percent=dv_percent[0],
sat_fat_percent=dv_percent[1],
chol_percent=dv_percent[2],
sodium_percent=dv_percent[3],
carb_percent=dv_percent[4],
diet_fibe_percent=dv_percent[5],
tot_sugars_percent=dv_percent[6],
protein_percent=dv_percent[7],
vitc_percent=dv_percent[8],
calc_percent=dv_percent[9],
iron_percent=dv_percent[10],
pota_percent=dv_percent[11]
)
# Define a function to apply the CSS styles to the table cells
def format_table(val):
return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;"
with st.container():
# Add the nutrition table to the Streamlit app
st.write("<h2 style='text-align:left;'>Nutrition Facts (per serving)</h2>", unsafe_allow_html=True)
st.write(f"<div style='max-height:none; overflow:auto'>{formatted_html}</div>", unsafe_allow_html=True)
st.write("<p style='text-align:left;'>*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.</p>", unsafe_allow_html=True)
# create pie chart
labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium']
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
st.markdown("### Macronutrients Pie Chart ;) (In Grams)")
st.plotly_chart(fig)
st.write("**Tags:** ", random_recipe['Tags'])
st.write("**Recipe URL:** ", random_recipe['Recipe URLs'])
st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*")
st.markdown("### JSON Response:")
st.write(response_json)
else:
st.markdown("### Recommended Recipe:")
st.write("**Title:** ", response_json[0]['Title'])
if response_json[0]['Image Link'].endswith(".jpg") or response_json[0]['Image Link'].endswith(".jpeg") or response_json[0]['Image Link'].endswith(".png"):
st.image(response_json[0]['Image Link'], width=300)
else:
st.write("**Image Link:** ", response_json[0]['Image Link'])
st.write("**Rating:** ", response_json[0]['Rating'])
if response_json[0]['Description'] != "Description not found":
st.write("**Description:** ", response_json[0]['Description'])
st.write("**Ingredients:**<br>", response_json[0]['Ingredients'].replace('\n', '<br>'), unsafe_allow_html=True)
st.write("**Recipe Facts:**<br>", response_json[0]['Recipe Facts'].replace('\n', '<br>'), unsafe_allow_html=True)
st.write("**Directions:**<br>", response_json[0]['Directions'].replace('\n', '<br>'), unsafe_allow_html=True)
# extract only numeric values and convert mg to g
values = [
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Fat'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Saturated Fat'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Cholesterol'])) / 1000,
float(re.sub(r'[^\d.]+', '', response_json[0]['Sodium'])) / 1000,
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Carbohydrate'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Dietary Fiber'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Total Sugars'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Protein'])),
float(re.sub(r'[^\d.]+', '', response_json[0]['Vitamin C'])) / 1000,
float(re.sub(r'[^\d.]+', '', response_json[0]['Calcium'])) / 1000,
float(re.sub(r'[^\d.]+', '', response_json[0]['Iron'])) / 1000,
float(re.sub(r'[^\d.]+', '', response_json[0]['Potassium'])) / 1000
]
# Create a list of daily values (DV) for each nutrient based on a 2000 calorie per day diet, all are in grams
dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7]
# Calculate the percentage of DV for each nutrient
dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)]
nutrition_html = """
<div id="nutrition-info_6-0" class="comp nutrition-info">
<table class="nutrition-info__table">
<thead>
<tr>
<th class="nutrition-info__heading" colspan="3">Number of Servings: <span class="nutrition-info__heading-aside">{servings}</span></th>
</tr>
</thead>
<tbody class="nutrition-info__table--body">
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Calories</td>
<td class="nutrition-info__table--cell">{calories}</td>
<td class="nutrition-info__table--cell"></td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Fat</td>
<td class="nutrition-info__table--cell">{total_fat}</td>
<td class="nutrition-info__table--cell">{fat_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Saturated Fat</td>
<td class="nutrition-info__table--cell">{saturated_fat}</td>
<td class="nutrition-info__table--cell">{sat_fat_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Cholesterol</td>
<td class="nutrition-info__table--cell">{cholesterol}</td>
<td class="nutrition-info__table--cell">{chol_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Sodium</td>
<td class="nutrition-info__table--cell">{sodium}</td>
<td class="nutrition-info__table--cell">{sodium_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Carbohydrate</td>
<td class="nutrition-info__table--cell">{total_carbohydrate}</td>
<td class="nutrition-info__table--cell">{carb_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Dietary Fiber</td>
<td class="nutrition-info__table--cell">{dietary_fiber}</td>
<td class="nutrition-info__table--cell">{diet_fibe_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Total Sugars</td>
<td class="nutrition-info__table--cell">{total_sugars}</td>
<td class="nutrition-info__table--cell">{tot_sugars_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Protein</td>
<td class="nutrition-info__table--cell">{protein}</td>
<td class="nutrition-info__table--cell">{protein_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Vitamin C</td>
<td class="nutrition-info__table--cell">{vitc}</td>
<td class="nutrition-info__table--cell">{vitc_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Calcium</td>
<td class="nutrition-info__table--cell">{calc}</td>
<td class="nutrition-info__table--cell">{calc_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Iron</td>
<td class="nutrition-info__table--cell">{iron}</td>
<td class="nutrition-info__table--cell">{iron_percent}% DV</td>
</tr>
<tr class="nutrition-info__table--row">
<td class="nutrition-info__table--cell">Potassium</td>
<td class="nutrition-info__table--cell">{pota}</td>
<td class="nutrition-info__table--cell">{pota_percent}% DV</td>
</tr>
</tbody>
</table>
</div>
"""
# Use the nutrition HTML and format it with the values
formatted_html = nutrition_html.format(
calories=response_json[0]['Calories'],
total_fat=response_json[0]['Total Fat'],
saturated_fat=response_json[0]['Saturated Fat'],
cholesterol=response_json[0]['Cholesterol'],
sodium=response_json[0]['Sodium'],
total_carbohydrate=response_json[0]['Total Carbohydrate'],
dietary_fiber=response_json[0]['Dietary Fiber'],
total_sugars=response_json[0]['Total Sugars'],
servings=response_json[0]['Number of Servings'],
vitc=response_json[0]['Vitamin C'],
calc=response_json[0]['Calcium'],
iron=response_json[0]['Iron'],
pota=response_json[0]['Potassium'],
protein=response_json[0]['Protein'],
fat_percent=dv_percent[0],
sat_fat_percent=dv_percent[1],
chol_percent=dv_percent[2],
sodium_percent=dv_percent[3],
carb_percent=dv_percent[4],
diet_fibe_percent=dv_percent[5],
tot_sugars_percent=dv_percent[6],
protein_percent=dv_percent[7],
vitc_percent=dv_percent[8],
calc_percent=dv_percent[9],
iron_percent=dv_percent[10],
pota_percent=dv_percent[11]
)
# Define a function to apply the CSS styles to the table cells
def format_table(val):
return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;"
with st.container():
# Add the nutrition table to the Streamlit app
st.write("<h2 style='text-align:left;'>Nutrition Facts (per serving)</h2>", unsafe_allow_html=True)
st.write(f"<div style='max-height:none; overflow:auto'>{formatted_html}</div>", unsafe_allow_html=True)
st.write("<p style='text-align:left;'>*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.</p>", unsafe_allow_html=True)
# create pie chart
labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium']
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
st.markdown("### Macronutrients Pie Chart ;) (In Grams)")
st.plotly_chart(fig)
st.write("**Tags:** ", response_json[0]['Tags'])
st.write("**Recipe URL:** ", response_json[0]['Recipe URLs'])
st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*")
st.markdown("### JSON Response:")
st.write(response_json)
st.markdown("<hr style='text-align: center;'>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center'><a href='https://github.com/Kaludii'>Github</a> | <a href='https://huggingface.co/Kaludi'>HuggingFace</a></p>", unsafe_allow_html=True)
if __name__ == '__main__':
main()
|