import streamlit as st from PIL import Image from transformers import pipeline import numpy as np from transformers import AutoFeatureExtractor from transformers import AutoModelForImageClassification st.set_page_config(layout='wide', page_title='Food Category Classification & Recipes' ) # Setting up Sidebar sidebar_acc = ['App Description', 'About Project'] sidebar_acc_nav = st.sidebar.radio('**INFORMATION SECTION**', sidebar_acc) if sidebar_acc_nav == 'App Description': st.sidebar.markdown("

Food Category Classification Description

", unsafe_allow_html=True) st.sidebar.markdown("This is a Food Category Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize **12** different categories of foods, which includes **Bread**, **Dairy**, **Dessert**, **Egg**, **Fried Food**, **Fruit**, **Meat**, **Noodles**, **Rice**, **Seafood**, **Soup**, and **Vegetable**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience.") elif sidebar_acc_nav == 'About Project': st.sidebar.markdown("

About Project

", unsafe_allow_html=True) st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.markdown("

Project Location:

", unsafe_allow_html=True) st.sidebar.markdown("

Model | Dataset

", unsafe_allow_html=True) st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.markdown("

Project Creators:

", unsafe_allow_html=True) st.sidebar.markdown("

AA

", unsafe_allow_html=True) st.sidebar.markdown("

AM

", unsafe_allow_html=True) st.sidebar.markdown("

BK

", unsafe_allow_html=True) st.sidebar.markdown("

DK

", unsafe_allow_html=True) def main(): st.title("Food Category Classification & Recipes") st.markdown("### Backgroud") st.markdown("This is a Food Category Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize **12** different categories of foods, which includes **Bread**, **Dairy**, **Dessert**, **Egg**, **Fried Food**, **Fruit**, **Meat**, **Noodles**, **Rice**, **Seafood**, **Soup**, and **Vegetable**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience.") st.header("Try it out!") images = ["examples/example_0.jpg", "examples/example_1.jpg", "examples/example_2.jpg", "examples/example_3.jpg", "examples/example_4.jpg", "examples/example_5.jpg", "examples/example_6.jpg", "examples/example_7.jpg"] show_images = False if st.checkbox("Show/Hide Examples"): # display the text if the checkbox returns True value show_images = not show_images if show_images: st.header("Example Images") for image in images: st.image(image, width=250) calories = st.slider("Select Max Calories (Not Functional Yet)", 50, 2000) # print the calories st.text('Selected: {}'.format(calories)) uploaded_file = st.file_uploader("Upload Files",type=['png','jpeg','jpg']) if uploaded_file!=None: img=Image.open(uploaded_file) extractor = AutoFeatureExtractor.from_pretrained("Kaludi/food-category-classification-v2.0") model = AutoModelForImageClassification.from_pretrained("Kaludi/food-category-classification-v2.0") inputs = extractor(img,return_tensors="pt") outputs = model(**inputs) label_num=outputs.logits.softmax(1).argmax(1) label_num=label_num.item() probs = outputs.logits.softmax(dim=1) percentage = round(probs[0, label_num].item() * 100, 2) st.write("The Predicted Classification is:") if label_num==0: st.write("**Bread** (" + f"{percentage}%)") elif label_num==1: st.write("**Dairy** (" + f"{percentage}%)") elif label_num==2: st.write("Dessert (" + f"{percentage}%)") elif label_num==3: st.write("Egg (" + f"{percentage}%)") elif label_num==4: st.write("Fried Food (" + f"{percentage}%)") elif label_num==5: st.write("Fruit (" + f"{percentage}%)") elif label_num==6: st.write("Meat (" + f"{percentage}%)") elif label_num==7: st.write("Noodles (" + f"{percentage}%)") elif label_num==8: st.write("Rice (" + f"{percentage}%)") elif label_num==9: st.write("Seafood (" + f"{percentage}%)") elif label_num==10: st.write("Soup (" + f"{percentage}%)") else: st.write("Vegetable (" + f"{percentage}%)") select_health = st.selectbox("Select One (Not Functional Yet):", ["Choose Healthy or Non-Healthy", "Healthy", "Non-Healthy"]) if select_health == "Healthy": st.write("You selected healthy for", "**Bread**" if label_num==0 else "Dairy" if label_num==1 else "Dessert" if label_num==2 else "Egg" if label_num==3 else "Fried Food" if label_num==4 else "Fruit" if label_num==5 else "Meat" if label_num==6 else "Noodles" if label_num==7 else "Rice" if label_num==8 else "Seafood" if label_num==9 else "Soup" if label_num==10 else "Vegetable") # Add code to fetch healthy recipe here elif select_health == "Non-Healthy": st.write("You selected non-healthy for", "**Bread**" if label_num==0 else "Dairy" if label_num==1 else "Dessert" if label_num==2 else "Egg" if label_num==3 else "Fried Food" if label_num==4 else "Fruit" if label_num==5 else "Meat" if label_num==6 else "Noodles" if label_num==7 else "Rice" if label_num==8 else "Seafood" if label_num==9 else "Soup" if label_num==10 else "Vegetable") # Add code to fetch unhealthy recipe here st.image(img) if __name__ == '__main__': main()