Salt
commited on
Commit
·
e95f4b9
1
Parent(s):
5828964
Upload 3 files
Browse files- constants.py +109 -0
- pipelines.py +26 -0
- server.py +777 -0
constants.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Constants
|
2 |
+
# Also try: 'Qiliang/bart-large-cnn-samsum-ElectrifAi_v10'
|
3 |
+
DEFAULT_SUMMARIZATION_MODEL = "Qiliang/bart-large-cnn-samsum-ChatGPT_v3"
|
4 |
+
# Also try: 'joeddav/distilbert-base-uncased-go-emotions-student'
|
5 |
+
DEFAULT_CLASSIFICATION_MODEL = "nateraw/bert-base-uncased-emotion"
|
6 |
+
# Also try: 'Salesforce/blip-image-captioning-base'
|
7 |
+
DEFAULT_CAPTIONING_MODEL = "Salesforce/blip-image-captioning-large"
|
8 |
+
DEFAULT_KEYPHRASE_MODEL = "ml6team/keyphrase-extraction-distilbert-inspec"
|
9 |
+
DEFAULT_PROMPT_MODEL = "FredZhang7/anime-anything-promptgen-v2"
|
10 |
+
DEFAULT_SD_MODEL = "ckpt/anything-v4.5-vae-swapped"
|
11 |
+
DEFAULT_EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
12 |
+
DEFAULT_REMOTE_SD_HOST = "127.0.0.1"
|
13 |
+
DEFAULT_REMOTE_SD_PORT = 7860
|
14 |
+
SILERO_SAMPLES_PATH = "tts_samples"
|
15 |
+
SILERO_SAMPLE_TEXT = "The quick brown fox jumps over the lazy dog"
|
16 |
+
# ALL_MODULES = ['caption', 'summarize', 'classify', 'keywords', 'prompt', 'sd']
|
17 |
+
DEFAULT_SUMMARIZE_PARAMS = {
|
18 |
+
"temperature": 1.0,
|
19 |
+
"repetition_penalty": 1.0,
|
20 |
+
"max_length": 500,
|
21 |
+
"min_length": 200,
|
22 |
+
"length_penalty": 1.5,
|
23 |
+
"bad_words": [
|
24 |
+
"\n",
|
25 |
+
'"',
|
26 |
+
"*",
|
27 |
+
"[",
|
28 |
+
"]",
|
29 |
+
"{",
|
30 |
+
"}",
|
31 |
+
":",
|
32 |
+
"(",
|
33 |
+
")",
|
34 |
+
"<",
|
35 |
+
">",
|
36 |
+
"Â",
|
37 |
+
"The text ends",
|
38 |
+
"The story ends",
|
39 |
+
"The text is",
|
40 |
+
"The story is",
|
41 |
+
],
|
42 |
+
}
|
43 |
+
|
44 |
+
PROMPT_PREFIX = "best quality, absurdres, "
|
45 |
+
NEGATIVE_PROMPT = """lowres, bad anatomy, error body, error hair, error arm,
|
46 |
+
error hands, bad hands, error fingers, bad fingers, missing fingers
|
47 |
+
error legs, bad legs, multiple legs, missing legs, error lighting,
|
48 |
+
error shadow, error reflection, text, error, extra digit, fewer digits,
|
49 |
+
cropped, worst quality, low quality, normal quality, jpeg artifacts,
|
50 |
+
signature, watermark, username, blurry"""
|
51 |
+
|
52 |
+
|
53 |
+
# list of key phrases to be looking for in text (unused for now)
|
54 |
+
INDICATOR_LIST = [
|
55 |
+
"female",
|
56 |
+
"girl",
|
57 |
+
"male",
|
58 |
+
"boy",
|
59 |
+
"woman",
|
60 |
+
"man",
|
61 |
+
"hair",
|
62 |
+
"eyes",
|
63 |
+
"skin",
|
64 |
+
"wears",
|
65 |
+
"appearance",
|
66 |
+
"costume",
|
67 |
+
"clothes",
|
68 |
+
"body",
|
69 |
+
"tall",
|
70 |
+
"short",
|
71 |
+
"chubby",
|
72 |
+
"thin",
|
73 |
+
"expression",
|
74 |
+
"angry",
|
75 |
+
"sad",
|
76 |
+
"blush",
|
77 |
+
"smile",
|
78 |
+
"happy",
|
79 |
+
"depressed",
|
80 |
+
"long",
|
81 |
+
"cold",
|
82 |
+
"breasts",
|
83 |
+
"chest",
|
84 |
+
"tail",
|
85 |
+
"ears",
|
86 |
+
"fur",
|
87 |
+
"race",
|
88 |
+
"species",
|
89 |
+
"wearing",
|
90 |
+
"shoes",
|
91 |
+
"boots",
|
92 |
+
"shirt",
|
93 |
+
"panties",
|
94 |
+
"bra",
|
95 |
+
"skirt",
|
96 |
+
"dress",
|
97 |
+
"kimono",
|
98 |
+
"wings",
|
99 |
+
"horns",
|
100 |
+
"pants",
|
101 |
+
"shorts",
|
102 |
+
"leggins",
|
103 |
+
"sandals",
|
104 |
+
"hat",
|
105 |
+
"glasses",
|
106 |
+
"sweater",
|
107 |
+
"hoodie",
|
108 |
+
"sweatshirt",
|
109 |
+
]
|
pipelines.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoModelForTokenClassification,
|
3 |
+
AutoTokenizer,
|
4 |
+
TokenClassificationPipeline,
|
5 |
+
)
|
6 |
+
from transformers.pipelines import AggregationStrategy
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
11 |
+
def __init__(self, model, *args, **kwargs):
|
12 |
+
super().__init__(
|
13 |
+
model=AutoModelForTokenClassification.from_pretrained(model),
|
14 |
+
tokenizer=AutoTokenizer.from_pretrained(model),
|
15 |
+
*args,
|
16 |
+
**kwargs
|
17 |
+
)
|
18 |
+
|
19 |
+
def postprocess(self, model_outputs):
|
20 |
+
results = super().postprocess(
|
21 |
+
model_outputs=model_outputs,
|
22 |
+
aggregation_strategy=AggregationStrategy.SIMPLE
|
23 |
+
if self.model.config.model_type == "roberta"
|
24 |
+
else AggregationStrategy.FIRST,
|
25 |
+
)
|
26 |
+
return np.unique([result.get("word").strip() for result in results])
|
server.py
ADDED
@@ -0,0 +1,777 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import wraps
|
2 |
+
from flask import (
|
3 |
+
Flask,
|
4 |
+
jsonify,
|
5 |
+
request,
|
6 |
+
render_template_string,
|
7 |
+
abort,
|
8 |
+
send_from_directory,
|
9 |
+
send_file,
|
10 |
+
)
|
11 |
+
from flask_cors import CORS
|
12 |
+
import markdown
|
13 |
+
import argparse
|
14 |
+
from transformers import AutoTokenizer, AutoProcessor, pipeline
|
15 |
+
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
16 |
+
from transformers import BlipForConditionalGeneration, GPT2Tokenizer
|
17 |
+
import unicodedata
|
18 |
+
import torch
|
19 |
+
import time
|
20 |
+
import os
|
21 |
+
import gc
|
22 |
+
from PIL import Image
|
23 |
+
import base64
|
24 |
+
from io import BytesIO
|
25 |
+
from random import randint
|
26 |
+
import webuiapi
|
27 |
+
import hashlib
|
28 |
+
from constants import *
|
29 |
+
from colorama import Fore, Style, init as colorama_init
|
30 |
+
|
31 |
+
colorama_init()
|
32 |
+
|
33 |
+
|
34 |
+
class SplitArgs(argparse.Action):
|
35 |
+
def __call__(self, parser, namespace, values, option_string=None):
|
36 |
+
setattr(
|
37 |
+
namespace, self.dest, values.replace('"', "").replace("'", "").split(",")
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
# Script arguments
|
42 |
+
parser = argparse.ArgumentParser(
|
43 |
+
prog="TavernAI Extras", description="Web API for transformers models"
|
44 |
+
)
|
45 |
+
parser.add_argument(
|
46 |
+
"--port", type=int, help="Specify the port on which the application is hosted"
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"--listen", action="store_true", help="Host the app on the local network"
|
50 |
+
)
|
51 |
+
parser.add_argument(
|
52 |
+
"--share", action="store_true", help="Share the app on CloudFlare tunnel"
|
53 |
+
)
|
54 |
+
parser.add_argument("--cpu", action="store_true", help="Run the models on the CPU")
|
55 |
+
parser.add_argument("--summarization-model", help="Load a custom summarization model")
|
56 |
+
parser.add_argument(
|
57 |
+
"--classification-model", help="Load a custom text classification model"
|
58 |
+
)
|
59 |
+
parser.add_argument("--captioning-model", help="Load a custom captioning model")
|
60 |
+
parser.add_argument(
|
61 |
+
"--keyphrase-model", help="Load a custom keyphrase extraction model"
|
62 |
+
)
|
63 |
+
parser.add_argument("--prompt-model", help="Load a custom prompt generation model")
|
64 |
+
parser.add_argument("--embedding-model", help="Load a custom text embedding model")
|
65 |
+
|
66 |
+
sd_group = parser.add_mutually_exclusive_group()
|
67 |
+
|
68 |
+
local_sd = sd_group.add_argument_group("sd-local")
|
69 |
+
local_sd.add_argument("--sd-model", help="Load a custom SD image generation model")
|
70 |
+
local_sd.add_argument("--sd-cpu", help="Force the SD pipeline to run on the CPU")
|
71 |
+
|
72 |
+
remote_sd = sd_group.add_argument_group("sd-remote")
|
73 |
+
remote_sd.add_argument(
|
74 |
+
"--sd-remote", action="store_true", help="Use a remote backend for SD"
|
75 |
+
)
|
76 |
+
remote_sd.add_argument(
|
77 |
+
"--sd-remote-host", type=str, help="Specify the host of the remote SD backend"
|
78 |
+
)
|
79 |
+
remote_sd.add_argument(
|
80 |
+
"--sd-remote-port", type=int, help="Specify the port of the remote SD backend"
|
81 |
+
)
|
82 |
+
remote_sd.add_argument(
|
83 |
+
"--sd-remote-ssl", action="store_true", help="Use SSL for the remote SD backend"
|
84 |
+
)
|
85 |
+
remote_sd.add_argument(
|
86 |
+
"--sd-remote-auth",
|
87 |
+
type=str,
|
88 |
+
help="Specify the username:password for the remote SD backend (if required)",
|
89 |
+
)
|
90 |
+
|
91 |
+
parser.add_argument(
|
92 |
+
"--enable-modules",
|
93 |
+
action=SplitArgs,
|
94 |
+
default=[],
|
95 |
+
help="Override a list of enabled modules",
|
96 |
+
)
|
97 |
+
|
98 |
+
args = parser.parse_args()
|
99 |
+
|
100 |
+
port = args.port if args.port else 5100
|
101 |
+
host = "0.0.0.0" if args.listen else "localhost"
|
102 |
+
summarization_model = (
|
103 |
+
args.summarization_model
|
104 |
+
if args.summarization_model
|
105 |
+
else DEFAULT_SUMMARIZATION_MODEL
|
106 |
+
)
|
107 |
+
classification_model = (
|
108 |
+
args.classification_model
|
109 |
+
if args.classification_model
|
110 |
+
else DEFAULT_CLASSIFICATION_MODEL
|
111 |
+
)
|
112 |
+
captioning_model = (
|
113 |
+
args.captioning_model if args.captioning_model else DEFAULT_CAPTIONING_MODEL
|
114 |
+
)
|
115 |
+
keyphrase_model = (
|
116 |
+
args.keyphrase_model if args.keyphrase_model else DEFAULT_KEYPHRASE_MODEL
|
117 |
+
)
|
118 |
+
prompt_model = args.prompt_model if args.prompt_model else DEFAULT_PROMPT_MODEL
|
119 |
+
embedding_model = (
|
120 |
+
args.embedding_model if args.embedding_model else DEFAULT_EMBEDDING_MODEL
|
121 |
+
)
|
122 |
+
|
123 |
+
sd_use_remote = False if args.sd_model else True
|
124 |
+
sd_model = args.sd_model if args.sd_model else DEFAULT_SD_MODEL
|
125 |
+
sd_remote_host = args.sd_remote_host if args.sd_remote_host else DEFAULT_REMOTE_SD_HOST
|
126 |
+
sd_remote_port = args.sd_remote_port if args.sd_remote_port else DEFAULT_REMOTE_SD_PORT
|
127 |
+
sd_remote_ssl = args.sd_remote_ssl
|
128 |
+
sd_remote_auth = args.sd_remote_auth
|
129 |
+
|
130 |
+
modules = (
|
131 |
+
args.enable_modules if args.enable_modules and len(args.enable_modules) > 0 else []
|
132 |
+
)
|
133 |
+
|
134 |
+
if len(modules) == 0:
|
135 |
+
print(
|
136 |
+
f"{Fore.RED}{Style.BRIGHT}You did not select any modules to run! Choose them by adding an --enable-modules option"
|
137 |
+
)
|
138 |
+
print(f"Example: --enable-modules=caption,summarize{Style.RESET_ALL}")
|
139 |
+
|
140 |
+
# Models init
|
141 |
+
device_string = "cuda:0" if torch.cuda.is_available() and not args.cpu else "cpu"
|
142 |
+
device = torch.device(device_string)
|
143 |
+
torch_dtype = torch.float32 if device_string == "cpu" else torch.float16
|
144 |
+
|
145 |
+
if "caption" in modules:
|
146 |
+
print("Initializing an image captioning model...")
|
147 |
+
captioning_processor = AutoProcessor.from_pretrained(captioning_model)
|
148 |
+
if "blip" in captioning_model:
|
149 |
+
captioning_transformer = BlipForConditionalGeneration.from_pretrained(
|
150 |
+
captioning_model, torch_dtype=torch_dtype
|
151 |
+
).to(device)
|
152 |
+
else:
|
153 |
+
captioning_transformer = AutoModelForCausalLM.from_pretrained(
|
154 |
+
captioning_model, torch_dtype=torch_dtype
|
155 |
+
).to(device)
|
156 |
+
|
157 |
+
if "summarize" in modules:
|
158 |
+
print("Initializing a text summarization model...")
|
159 |
+
summarization_tokenizer = AutoTokenizer.from_pretrained(summarization_model)
|
160 |
+
summarization_transformer = AutoModelForSeq2SeqLM.from_pretrained(
|
161 |
+
summarization_model, torch_dtype=torch_dtype
|
162 |
+
).to(device)
|
163 |
+
|
164 |
+
if "classify" in modules:
|
165 |
+
print("Initializing a sentiment classification pipeline...")
|
166 |
+
classification_pipe = pipeline(
|
167 |
+
"text-classification",
|
168 |
+
model=classification_model,
|
169 |
+
top_k=None,
|
170 |
+
device=device,
|
171 |
+
torch_dtype=torch_dtype,
|
172 |
+
)
|
173 |
+
|
174 |
+
if "keywords" in modules:
|
175 |
+
print("Initializing a keyword extraction pipeline...")
|
176 |
+
import pipelines as pipelines
|
177 |
+
|
178 |
+
keyphrase_pipe = pipelines.KeyphraseExtractionPipeline(keyphrase_model)
|
179 |
+
|
180 |
+
if "prompt" in modules:
|
181 |
+
print("Initializing a prompt generator")
|
182 |
+
gpt_tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")
|
183 |
+
gpt_tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
184 |
+
gpt_model = AutoModelForCausalLM.from_pretrained(prompt_model)
|
185 |
+
prompt_generator = pipeline(
|
186 |
+
"text-generation", model=gpt_model, tokenizer=gpt_tokenizer
|
187 |
+
)
|
188 |
+
|
189 |
+
if "sd" in modules and not sd_use_remote:
|
190 |
+
from diffusers import StableDiffusionPipeline
|
191 |
+
from diffusers import EulerAncestralDiscreteScheduler
|
192 |
+
|
193 |
+
print("Initializing Stable Diffusion pipeline")
|
194 |
+
sd_device_string = (
|
195 |
+
"cuda" if torch.cuda.is_available() and not args.sd_cpu else "cpu"
|
196 |
+
)
|
197 |
+
sd_device = torch.device(sd_device_string)
|
198 |
+
sd_torch_dtype = torch.float32 if sd_device_string == "cpu" else torch.float16
|
199 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(
|
200 |
+
sd_model, custom_pipeline="lpw_stable_diffusion", torch_dtype=sd_torch_dtype
|
201 |
+
).to(sd_device)
|
202 |
+
sd_pipe.safety_checker = lambda images, clip_input: (images, False)
|
203 |
+
sd_pipe.enable_attention_slicing()
|
204 |
+
# pipe.scheduler = KarrasVeScheduler.from_config(pipe.scheduler.config)
|
205 |
+
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
206 |
+
sd_pipe.scheduler.config
|
207 |
+
)
|
208 |
+
elif "sd" in modules and sd_use_remote:
|
209 |
+
print("Initializing Stable Diffusion connection")
|
210 |
+
try:
|
211 |
+
sd_remote = webuiapi.WebUIApi(
|
212 |
+
host=sd_remote_host, port=sd_remote_port, use_https=sd_remote_ssl
|
213 |
+
)
|
214 |
+
if sd_remote_auth:
|
215 |
+
username, password = sd_remote_auth.split(":")
|
216 |
+
sd_remote.set_auth(username, password)
|
217 |
+
sd_remote.util_wait_for_ready()
|
218 |
+
except Exception as e:
|
219 |
+
# remote sd from modules
|
220 |
+
print(
|
221 |
+
f"{Fore.RED}{Style.BRIGHT}Could not connect to remote SD backend at http{'s' if sd_remote_ssl else ''}://{sd_remote_host}:{sd_remote_port}! Disabling SD module...{Style.RESET_ALL}"
|
222 |
+
)
|
223 |
+
modules.remove("sd")
|
224 |
+
|
225 |
+
if "tts" in modules:
|
226 |
+
if not os.path.exists(SILERO_SAMPLES_PATH):
|
227 |
+
os.makedirs(SILERO_SAMPLES_PATH)
|
228 |
+
print("Initializing Silero TTS server")
|
229 |
+
from silero_api_server import tts
|
230 |
+
|
231 |
+
tts_service = tts.SileroTtsService(SILERO_SAMPLES_PATH)
|
232 |
+
if len(os.listdir(SILERO_SAMPLES_PATH)) == 0:
|
233 |
+
print("Generating Silero TTS samples...")
|
234 |
+
tts_service.update_sample_text(SILERO_SAMPLE_TEXT)
|
235 |
+
tts_service.generate_samples()
|
236 |
+
|
237 |
+
if "chromadb" in modules:
|
238 |
+
print("Initializing ChromaDB")
|
239 |
+
import chromadb
|
240 |
+
import posthog
|
241 |
+
from chromadb.config import Settings
|
242 |
+
from sentence_transformers import SentenceTransformer
|
243 |
+
|
244 |
+
# disable chromadb telemetry
|
245 |
+
posthog.capture = lambda *args, **kwargs: None
|
246 |
+
chromadb_client = chromadb.Client(Settings(anonymized_telemetry=False))
|
247 |
+
chromadb_embedder = SentenceTransformer(embedding_model)
|
248 |
+
chromadb_embed_fn = chromadb_embedder.encode
|
249 |
+
|
250 |
+
|
251 |
+
# Flask init
|
252 |
+
app = Flask(__name__)
|
253 |
+
CORS(app) # allow cross-domain requests
|
254 |
+
app.config["MAX_CONTENT_LENGTH"] = 100 * 1024 * 1024
|
255 |
+
|
256 |
+
|
257 |
+
def require_module(name):
|
258 |
+
def wrapper(fn):
|
259 |
+
@wraps(fn)
|
260 |
+
def decorated_view(*args, **kwargs):
|
261 |
+
if name not in modules:
|
262 |
+
abort(403, "Module is disabled by config")
|
263 |
+
return fn(*args, **kwargs)
|
264 |
+
|
265 |
+
return decorated_view
|
266 |
+
|
267 |
+
return wrapper
|
268 |
+
|
269 |
+
|
270 |
+
# AI stuff
|
271 |
+
def classify_text(text: str) -> list:
|
272 |
+
output = classification_pipe(
|
273 |
+
text,
|
274 |
+
truncation=True,
|
275 |
+
max_length=classification_pipe.model.config.max_position_embeddings,
|
276 |
+
)[0]
|
277 |
+
return sorted(output, key=lambda x: x["score"], reverse=True)
|
278 |
+
|
279 |
+
|
280 |
+
def caption_image(raw_image: Image, max_new_tokens: int = 20) -> str:
|
281 |
+
inputs = captioning_processor(raw_image.convert("RGB"), return_tensors="pt").to(
|
282 |
+
device, torch_dtype
|
283 |
+
)
|
284 |
+
outputs = captioning_transformer.generate(**inputs, max_new_tokens=max_new_tokens)
|
285 |
+
caption = captioning_processor.decode(outputs[0], skip_special_tokens=True)
|
286 |
+
return caption
|
287 |
+
|
288 |
+
|
289 |
+
def summarize_chunks(text: str, params: dict) -> str:
|
290 |
+
try:
|
291 |
+
return summarize(text, params)
|
292 |
+
except IndexError:
|
293 |
+
print(
|
294 |
+
"Sequence length too large for model, cutting text in half and calling again"
|
295 |
+
)
|
296 |
+
new_params = params.copy()
|
297 |
+
new_params["max_length"] = new_params["max_length"] // 2
|
298 |
+
new_params["min_length"] = new_params["min_length"] // 2
|
299 |
+
return summarize_chunks(
|
300 |
+
text[: (len(text) // 2)], new_params
|
301 |
+
) + summarize_chunks(text[(len(text) // 2) :], new_params)
|
302 |
+
|
303 |
+
|
304 |
+
def summarize(text: str, params: dict) -> str:
|
305 |
+
# Tokenize input
|
306 |
+
inputs = summarization_tokenizer(text, return_tensors="pt").to(device)
|
307 |
+
token_count = len(inputs[0])
|
308 |
+
|
309 |
+
bad_words_ids = [
|
310 |
+
summarization_tokenizer(bad_word, add_special_tokens=False).input_ids
|
311 |
+
for bad_word in params["bad_words"]
|
312 |
+
]
|
313 |
+
summary_ids = summarization_transformer.generate(
|
314 |
+
inputs["input_ids"],
|
315 |
+
num_beams=2,
|
316 |
+
max_new_tokens=max(token_count, int(params["max_length"])),
|
317 |
+
min_new_tokens=min(token_count, int(params["min_length"])),
|
318 |
+
repetition_penalty=float(params["repetition_penalty"]),
|
319 |
+
temperature=float(params["temperature"]),
|
320 |
+
length_penalty=float(params["length_penalty"]),
|
321 |
+
bad_words_ids=bad_words_ids,
|
322 |
+
)
|
323 |
+
summary = summarization_tokenizer.batch_decode(
|
324 |
+
summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
325 |
+
)[0]
|
326 |
+
summary = normalize_string(summary)
|
327 |
+
return summary
|
328 |
+
|
329 |
+
|
330 |
+
def normalize_string(input: str) -> str:
|
331 |
+
output = " ".join(unicodedata.normalize("NFKC", input).strip().split())
|
332 |
+
return output
|
333 |
+
|
334 |
+
|
335 |
+
def extract_keywords(text: str) -> list:
|
336 |
+
punctuation = "(){}[]\n\r<>"
|
337 |
+
trans = str.maketrans(punctuation, " " * len(punctuation))
|
338 |
+
text = text.translate(trans)
|
339 |
+
text = normalize_string(text)
|
340 |
+
return list(keyphrase_pipe(text))
|
341 |
+
|
342 |
+
|
343 |
+
def generate_prompt(keywords: list, length: int = 100, num: int = 4) -> str:
|
344 |
+
prompt = ", ".join(keywords)
|
345 |
+
outs = prompt_generator(
|
346 |
+
prompt,
|
347 |
+
max_length=length,
|
348 |
+
num_return_sequences=num,
|
349 |
+
do_sample=True,
|
350 |
+
repetition_penalty=1.2,
|
351 |
+
temperature=0.7,
|
352 |
+
top_k=4,
|
353 |
+
early_stopping=True,
|
354 |
+
)
|
355 |
+
return [out["generated_text"] for out in outs]
|
356 |
+
|
357 |
+
|
358 |
+
def generate_image(data: dict) -> Image:
|
359 |
+
prompt = normalize_string(f'{data["prompt_prefix"]} {data["prompt"]}')
|
360 |
+
|
361 |
+
if sd_use_remote:
|
362 |
+
image = sd_remote.txt2img(
|
363 |
+
prompt=prompt,
|
364 |
+
negative_prompt=data["negative_prompt"],
|
365 |
+
sampler_name=data["sampler"],
|
366 |
+
steps=data["steps"],
|
367 |
+
cfg_scale=data["scale"],
|
368 |
+
width=data["width"],
|
369 |
+
height=data["height"],
|
370 |
+
restore_faces=data["restore_faces"],
|
371 |
+
enable_hr=data["enable_hr"],
|
372 |
+
save_images=True,
|
373 |
+
send_images=True,
|
374 |
+
do_not_save_grid=False,
|
375 |
+
do_not_save_samples=False,
|
376 |
+
).image
|
377 |
+
else:
|
378 |
+
image = sd_pipe(
|
379 |
+
prompt=prompt,
|
380 |
+
negative_prompt=data["negative_prompt"],
|
381 |
+
num_inference_steps=data["steps"],
|
382 |
+
guidance_scale=data["scale"],
|
383 |
+
width=data["width"],
|
384 |
+
height=data["height"],
|
385 |
+
).images[0]
|
386 |
+
|
387 |
+
image.save("./debug.png")
|
388 |
+
return image
|
389 |
+
|
390 |
+
|
391 |
+
def image_to_base64(image: Image, quality: int = 75) -> str:
|
392 |
+
buffered = BytesIO()
|
393 |
+
image.save(buffered, format="JPEG", quality=quality)
|
394 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
395 |
+
return img_str
|
396 |
+
|
397 |
+
|
398 |
+
@app.before_request
|
399 |
+
# Request time measuring
|
400 |
+
def before_request():
|
401 |
+
request.start_time = time.time()
|
402 |
+
|
403 |
+
|
404 |
+
@app.after_request
|
405 |
+
def after_request(response):
|
406 |
+
duration = time.time() - request.start_time
|
407 |
+
response.headers["X-Request-Duration"] = str(duration)
|
408 |
+
return response
|
409 |
+
|
410 |
+
|
411 |
+
@app.route("/", methods=["GET"])
|
412 |
+
def index():
|
413 |
+
with open("./README.md", "r", encoding="utf8") as f:
|
414 |
+
content = f.read()
|
415 |
+
return render_template_string(markdown.markdown(content, extensions=["tables"]))
|
416 |
+
|
417 |
+
|
418 |
+
@app.route("/api/extensions", methods=["GET"])
|
419 |
+
def get_extensions():
|
420 |
+
extensions = dict(
|
421 |
+
{
|
422 |
+
"extensions": [
|
423 |
+
{
|
424 |
+
"name": "not-supported",
|
425 |
+
"metadata": {
|
426 |
+
"display_name": """<span style="white-space:break-spaces;">Extensions serving using Extensions API is no longer supported. Please update the mod from: <a href="https://github.com/Cohee1207/SillyTavern">https://github.com/Cohee1207/SillyTavern</a></span>""",
|
427 |
+
"requires": [],
|
428 |
+
"assets": [],
|
429 |
+
},
|
430 |
+
}
|
431 |
+
]
|
432 |
+
}
|
433 |
+
)
|
434 |
+
return jsonify(extensions)
|
435 |
+
|
436 |
+
|
437 |
+
@app.route("/api/caption", methods=["POST"])
|
438 |
+
@require_module("caption")
|
439 |
+
def api_caption():
|
440 |
+
data = request.get_json()
|
441 |
+
|
442 |
+
if "image" not in data or not isinstance(data["image"], str):
|
443 |
+
abort(400, '"image" is required')
|
444 |
+
|
445 |
+
image = Image.open(BytesIO(base64.b64decode(data["image"])))
|
446 |
+
image = image.convert("RGB")
|
447 |
+
image.thumbnail((512, 512))
|
448 |
+
caption = caption_image(image)
|
449 |
+
thumbnail = image_to_base64(image)
|
450 |
+
print("Caption:", caption, sep="\n")
|
451 |
+
gc.collect()
|
452 |
+
return jsonify({"caption": caption, "thumbnail": thumbnail})
|
453 |
+
|
454 |
+
|
455 |
+
@app.route("/api/summarize", methods=["POST"])
|
456 |
+
@require_module("summarize")
|
457 |
+
def api_summarize():
|
458 |
+
data = request.get_json()
|
459 |
+
|
460 |
+
if "text" not in data or not isinstance(data["text"], str):
|
461 |
+
abort(400, '"text" is required')
|
462 |
+
|
463 |
+
params = DEFAULT_SUMMARIZE_PARAMS.copy()
|
464 |
+
|
465 |
+
if "params" in data and isinstance(data["params"], dict):
|
466 |
+
params.update(data["params"])
|
467 |
+
|
468 |
+
print("Summary input:", data["text"], sep="\n")
|
469 |
+
summary = summarize_chunks(data["text"], params)
|
470 |
+
print("Summary output:", summary, sep="\n")
|
471 |
+
gc.collect()
|
472 |
+
return jsonify({"summary": summary})
|
473 |
+
|
474 |
+
|
475 |
+
@app.route("/api/classify", methods=["POST"])
|
476 |
+
@require_module("classify")
|
477 |
+
def api_classify():
|
478 |
+
data = request.get_json()
|
479 |
+
|
480 |
+
if "text" not in data or not isinstance(data["text"], str):
|
481 |
+
abort(400, '"text" is required')
|
482 |
+
|
483 |
+
print("Classification input:", data["text"], sep="\n")
|
484 |
+
classification = classify_text(data["text"])
|
485 |
+
print("Classification output:", classification, sep="\n")
|
486 |
+
gc.collect()
|
487 |
+
return jsonify({"classification": classification})
|
488 |
+
|
489 |
+
|
490 |
+
@app.route("/api/classify/labels", methods=["GET"])
|
491 |
+
@require_module("classify")
|
492 |
+
def api_classify_labels():
|
493 |
+
classification = classify_text("")
|
494 |
+
labels = [x["label"] for x in classification]
|
495 |
+
return jsonify({"labels": labels})
|
496 |
+
|
497 |
+
|
498 |
+
@app.route("/api/keywords", methods=["POST"])
|
499 |
+
@require_module("keywords")
|
500 |
+
def api_keywords():
|
501 |
+
data = request.get_json()
|
502 |
+
|
503 |
+
if "text" not in data or not isinstance(data["text"], str):
|
504 |
+
abort(400, '"text" is required')
|
505 |
+
|
506 |
+
print("Keywords input:", data["text"], sep="\n")
|
507 |
+
keywords = extract_keywords(data["text"])
|
508 |
+
print("Keywords output:", keywords, sep="\n")
|
509 |
+
return jsonify({"keywords": keywords})
|
510 |
+
|
511 |
+
|
512 |
+
@app.route("/api/prompt", methods=["POST"])
|
513 |
+
@require_module("prompt")
|
514 |
+
def api_prompt():
|
515 |
+
data = request.get_json()
|
516 |
+
|
517 |
+
if "text" not in data or not isinstance(data["text"], str):
|
518 |
+
abort(400, '"text" is required')
|
519 |
+
|
520 |
+
keywords = extract_keywords(data["text"])
|
521 |
+
|
522 |
+
if "name" in data and isinstance(data["name"], str):
|
523 |
+
keywords.insert(0, data["name"])
|
524 |
+
|
525 |
+
print("Prompt input:", data["text"], sep="\n")
|
526 |
+
prompts = generate_prompt(keywords)
|
527 |
+
print("Prompt output:", prompts, sep="\n")
|
528 |
+
return jsonify({"prompts": prompts})
|
529 |
+
|
530 |
+
|
531 |
+
@app.route("/api/image", methods=["POST"])
|
532 |
+
@require_module("sd")
|
533 |
+
def api_image():
|
534 |
+
required_fields = {
|
535 |
+
"prompt": str,
|
536 |
+
}
|
537 |
+
|
538 |
+
optional_fields = {
|
539 |
+
"steps": 30,
|
540 |
+
"scale": 6,
|
541 |
+
"sampler": "DDIM",
|
542 |
+
"width": 512,
|
543 |
+
"height": 512,
|
544 |
+
"restore_faces": False,
|
545 |
+
"enable_hr": False,
|
546 |
+
"prompt_prefix": PROMPT_PREFIX,
|
547 |
+
"negative_prompt": NEGATIVE_PROMPT,
|
548 |
+
}
|
549 |
+
|
550 |
+
data = request.get_json()
|
551 |
+
|
552 |
+
# Check required fields
|
553 |
+
for field, field_type in required_fields.items():
|
554 |
+
if field not in data or not isinstance(data[field], field_type):
|
555 |
+
abort(400, f'"{field}" is required')
|
556 |
+
|
557 |
+
# Set optional fields to default values if not provided
|
558 |
+
for field, default_value in optional_fields.items():
|
559 |
+
type_match = (
|
560 |
+
(int, float)
|
561 |
+
if isinstance(default_value, (int, float))
|
562 |
+
else type(default_value)
|
563 |
+
)
|
564 |
+
if field not in data or not isinstance(data[field], type_match):
|
565 |
+
data[field] = default_value
|
566 |
+
|
567 |
+
try:
|
568 |
+
print("SD inputs:", data, sep="\n")
|
569 |
+
image = generate_image(data)
|
570 |
+
base64image = image_to_base64(image, quality=90)
|
571 |
+
return jsonify({"image": base64image})
|
572 |
+
except RuntimeError as e:
|
573 |
+
abort(400, str(e))
|
574 |
+
|
575 |
+
|
576 |
+
@app.route("/api/image/model", methods=["POST"])
|
577 |
+
@require_module("sd")
|
578 |
+
def api_image_model_set():
|
579 |
+
data = request.get_json()
|
580 |
+
|
581 |
+
if not sd_use_remote:
|
582 |
+
abort(400, "Changing model for local sd is not supported.")
|
583 |
+
if "model" not in data or not isinstance(data["model"], str):
|
584 |
+
abort(400, '"model" is required')
|
585 |
+
|
586 |
+
old_model = sd_remote.util_get_current_model()
|
587 |
+
sd_remote.util_set_model(data["model"], find_closest=False)
|
588 |
+
# sd_remote.util_set_model(data['model'])
|
589 |
+
sd_remote.util_wait_for_ready()
|
590 |
+
new_model = sd_remote.util_get_current_model()
|
591 |
+
|
592 |
+
return jsonify({"previous_model": old_model, "current_model": new_model})
|
593 |
+
|
594 |
+
|
595 |
+
@app.route("/api/image/model", methods=["GET"])
|
596 |
+
@require_module("sd")
|
597 |
+
def api_image_model_get():
|
598 |
+
model = sd_model
|
599 |
+
|
600 |
+
if sd_use_remote:
|
601 |
+
model = sd_remote.util_get_current_model()
|
602 |
+
|
603 |
+
return jsonify({"model": model})
|
604 |
+
|
605 |
+
|
606 |
+
@app.route("/api/image/models", methods=["GET"])
|
607 |
+
@require_module("sd")
|
608 |
+
def api_image_models():
|
609 |
+
models = [sd_model]
|
610 |
+
|
611 |
+
if sd_use_remote:
|
612 |
+
models = sd_remote.util_get_model_names()
|
613 |
+
|
614 |
+
return jsonify({"models": models})
|
615 |
+
|
616 |
+
|
617 |
+
@app.route("/api/image/samplers", methods=["GET"])
|
618 |
+
@require_module("sd")
|
619 |
+
def api_image_samplers():
|
620 |
+
samplers = ["Euler a"]
|
621 |
+
|
622 |
+
if sd_use_remote:
|
623 |
+
samplers = [sampler["name"] for sampler in sd_remote.get_samplers()]
|
624 |
+
|
625 |
+
return jsonify({"samplers": samplers})
|
626 |
+
|
627 |
+
|
628 |
+
@app.route("/api/modules", methods=["GET"])
|
629 |
+
def get_modules():
|
630 |
+
return jsonify({"modules": modules})
|
631 |
+
|
632 |
+
|
633 |
+
@app.route("/api/tts/speakers", methods=["GET"])
|
634 |
+
def tts_speakers():
|
635 |
+
voices = [
|
636 |
+
{
|
637 |
+
"name": speaker,
|
638 |
+
"voice_id": speaker,
|
639 |
+
"preview_url": f"{str(request.url_root)}api/tts/sample/{speaker}",
|
640 |
+
}
|
641 |
+
for speaker in tts_service.get_speakers()
|
642 |
+
]
|
643 |
+
return jsonify(voices)
|
644 |
+
|
645 |
+
|
646 |
+
@app.route("/api/tts/generate", methods=["POST"])
|
647 |
+
def tts_generate():
|
648 |
+
voice = request.get_json()
|
649 |
+
if "text" not in voice or not isinstance(voice["text"], str):
|
650 |
+
abort(400, '"text" is required')
|
651 |
+
if "speaker" not in voice or not isinstance(voice["speaker"], str):
|
652 |
+
abort(400, '"speaker" is required')
|
653 |
+
# Remove asterisks
|
654 |
+
voice["text"] = voice["text"].replace("*", "")
|
655 |
+
try:
|
656 |
+
audio = tts_service.generate(voice["speaker"], voice["text"])
|
657 |
+
return send_file(audio, mimetype="audio/x-wav")
|
658 |
+
except Exception as e:
|
659 |
+
print(e)
|
660 |
+
abort(500, voice["speaker"])
|
661 |
+
|
662 |
+
|
663 |
+
@app.route("/api/tts/sample/<speaker>", methods=["GET"])
|
664 |
+
def tts_play_sample(speaker: str):
|
665 |
+
return send_from_directory(SILERO_SAMPLES_PATH, f"{speaker}.wav")
|
666 |
+
|
667 |
+
|
668 |
+
@app.route("/api/chromadb", methods=["POST"])
|
669 |
+
@require_module("chromadb")
|
670 |
+
def chromadb_add_messages():
|
671 |
+
data = request.get_json()
|
672 |
+
if "chat_id" not in data or not isinstance(data["chat_id"], str):
|
673 |
+
abort(400, '"chat_id" is required')
|
674 |
+
if "messages" not in data or not isinstance(data["messages"], list):
|
675 |
+
abort(400, '"messages" is required')
|
676 |
+
|
677 |
+
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
|
678 |
+
collection = chromadb_client.get_or_create_collection(
|
679 |
+
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
|
680 |
+
)
|
681 |
+
|
682 |
+
documents = [m["content"] for m in data["messages"]]
|
683 |
+
ids = [m["id"] for m in data["messages"]]
|
684 |
+
metadatas = [
|
685 |
+
{"role": m["role"], "date": m["date"], "meta": m.get("meta", "")}
|
686 |
+
for m in data["messages"]
|
687 |
+
]
|
688 |
+
|
689 |
+
collection.upsert(
|
690 |
+
ids=ids,
|
691 |
+
documents=documents,
|
692 |
+
metadatas=metadatas,
|
693 |
+
)
|
694 |
+
|
695 |
+
return jsonify({"count": len(ids)})
|
696 |
+
|
697 |
+
|
698 |
+
@app.route("/api/chromadb/purge", methods=["POST"])
|
699 |
+
@require_module("chromadb")
|
700 |
+
def chromadb_purge():
|
701 |
+
data = request.get_json()
|
702 |
+
if "chat_id" not in data or not isinstance(data["chat_id"], str):
|
703 |
+
abort(400, '"chat_id" is required')
|
704 |
+
|
705 |
+
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
|
706 |
+
collection = chromadb_client.get_or_create_collection(
|
707 |
+
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
|
708 |
+
)
|
709 |
+
|
710 |
+
deleted = collection.delete()
|
711 |
+
print("ChromaDB embeddings deleted", len(deleted))
|
712 |
+
return 'Ok', 200
|
713 |
+
|
714 |
+
|
715 |
+
@app.route("/api/chromadb/query", methods=["POST"])
|
716 |
+
@require_module("chromadb")
|
717 |
+
def chromadb_query():
|
718 |
+
data = request.get_json()
|
719 |
+
if "chat_id" not in data or not isinstance(data["chat_id"], str):
|
720 |
+
abort(400, '"chat_id" is required')
|
721 |
+
if "query" not in data or not isinstance(data["query"], str):
|
722 |
+
abort(400, '"query" is required')
|
723 |
+
|
724 |
+
if "n_results" not in data or not isinstance(data["n_results"], int):
|
725 |
+
n_results = 1
|
726 |
+
else:
|
727 |
+
n_results = data["n_results"]
|
728 |
+
|
729 |
+
chat_id_md5 = hashlib.md5(data["chat_id"].encode()).hexdigest()
|
730 |
+
collection = chromadb_client.get_or_create_collection(
|
731 |
+
name=f"chat-{chat_id_md5}", embedding_function=chromadb_embed_fn
|
732 |
+
)
|
733 |
+
|
734 |
+
n_results = min(collection.count(), n_results)
|
735 |
+
query_result = collection.query(
|
736 |
+
query_texts=[data["query"]],
|
737 |
+
n_results=n_results,
|
738 |
+
)
|
739 |
+
|
740 |
+
documents = query_result["documents"][0]
|
741 |
+
ids = query_result["ids"][0]
|
742 |
+
metadatas = query_result["metadatas"][0]
|
743 |
+
distances = query_result["distances"][0]
|
744 |
+
|
745 |
+
messages = [
|
746 |
+
{
|
747 |
+
"id": ids[i],
|
748 |
+
"date": metadatas[i]["date"],
|
749 |
+
"role": metadatas[i]["role"],
|
750 |
+
"meta": metadatas[i]["meta"],
|
751 |
+
"content": documents[i],
|
752 |
+
"distance": distances[i],
|
753 |
+
}
|
754 |
+
for i in range(len(ids))
|
755 |
+
]
|
756 |
+
|
757 |
+
return jsonify(messages)
|
758 |
+
|
759 |
+
|
760 |
+
if args.share:
|
761 |
+
from flask_cloudflared import _run_cloudflared
|
762 |
+
import inspect
|
763 |
+
|
764 |
+
sig = inspect.signature(_run_cloudflared)
|
765 |
+
sum = sum(
|
766 |
+
1
|
767 |
+
for param in sig.parameters.values()
|
768 |
+
if param.kind == param.POSITIONAL_OR_KEYWORD
|
769 |
+
)
|
770 |
+
if sum > 1:
|
771 |
+
metrics_port = randint(8100, 9000)
|
772 |
+
cloudflare = _run_cloudflared(port, metrics_port)
|
773 |
+
else:
|
774 |
+
cloudflare = _run_cloudflared(port)
|
775 |
+
print("Running on", cloudflare)
|
776 |
+
|
777 |
+
app.run(host=host, port=port)
|