Spaces:
Build error
Build error
Karim-Gamal
commited on
Commit
·
0495d77
1
Parent(s):
0d195cd
Upload 2 files
Browse files- app.py +326 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import argparse
|
5 |
+
from scipy.special import softmax
|
6 |
+
import csv
|
7 |
+
import urllib.request
|
8 |
+
import numpy as np
|
9 |
+
import requests
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
args_dict = dict(
|
15 |
+
EX_LIST = [["This is wonderful!"],
|
16 |
+
["Nice car"],
|
17 |
+
["La France est la meilleure équipe du monde"],
|
18 |
+
["Visca Barca"],
|
19 |
+
["Hala Madrid"],
|
20 |
+
["Buongiorno"],
|
21 |
+
# ["Auf einigen deutschen Straßen gibt es kein Radar"],
|
22 |
+
["Tempo soleggiato in Italia"],
|
23 |
+
["Bonjour"],
|
24 |
+
["صباح الخير"],
|
25 |
+
["اكل زوجتي جميل"],
|
26 |
+
],
|
27 |
+
|
28 |
+
#MMiniLM
|
29 |
+
# Load the pretrained model and tokenizer
|
30 |
+
tokenizer_MMiniLM = AutoTokenizer.from_pretrained("Karim-Gamal/MMiniLM-L12-finetuned-emojis-IID-Fed"),
|
31 |
+
model_MMiniLM = AutoModelForSequenceClassification.from_pretrained("Karim-Gamal/MMiniLM-L12-finetuned-emojis-IID-Fed"),
|
32 |
+
|
33 |
+
#XLM
|
34 |
+
# Load the pretrained model and tokenizer
|
35 |
+
tokenizer_XLM = AutoTokenizer.from_pretrained("Karim-Gamal/XLM-Roberta-finetuned-emojis-IID-Fed"),
|
36 |
+
model_XLM = AutoModelForSequenceClassification.from_pretrained("Karim-Gamal/XLM-Roberta-finetuned-emojis-IID-Fed"),
|
37 |
+
|
38 |
+
#Bert
|
39 |
+
# Load the pretrained model and tokenizer
|
40 |
+
tokenizer_Bert = AutoTokenizer.from_pretrained("Karim-Gamal/BERT-base-finetuned-emojis-IID-Fed"),
|
41 |
+
model_Bert = AutoModelForSequenceClassification.from_pretrained("Karim-Gamal/BERT-base-finetuned-emojis-IID-Fed"),
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
description = 'Real-time Emoji Prediction',
|
46 |
+
article = '<head><style>@import url(https://fonts.googleapis.com/css?family=Open+Sans:400italic,600italic,700italic,800italic,400,600,700,800)<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-1BmE4kWBq78iYhFldvKuhfTAU6auU8tT94WrHftjDbrCEXSU1oBoqyl2QvZ6jIW3" crossorigin="anonymous"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.7.2/font/bootstrap-icons.css"> <link rel="stylesheet" href="https://unpkg.com/bootstrap-table@1.21.2/dist/bootstrap-table.min.css">\
|
47 |
+
.table-responsive{-sm|-md|-lg|-xl} body{ background-color: #f5f5f5; padding: 120px 0; font-family: \'Open Sans\', sans-serif; } img{ max-width:100%; } .div_table_{ position:relative; width: max-content; margin:0 auto; } .profile-card{ position:relative; width:280px; margin:0 auto; padding:40px 30px 30px; background:#fff; border: 5px solid rgba(255,255,255,.7); text-align:center; border-radius:40px; transition: all 200ms ease; } .profile-card_2{ position:relative; width:60%; // margin:0 auto; padding:40px 30px 30px; background:#fff; border: 5px solid rgba(255,255,255,.7); text-align:center; border-radius:40px; transition: all 200ms ease; } .mask-shadow{ z-index:-1 !important; width:95%; height:12px; background:#000; bottom:0; left:0; right:0; margin:0 auto; position:absolute; border-radius:4px; opacity:0; transition: all 400ms ease-in; } .mask-shadow_2{ z-index:-1 !important; width:95%; height:12px; background:#000; bottom:0; left:0; right:0; margin:0 auto; position:absolute; border-radius:4px; opacity:0; transition: all 400ms ease-in; } .profile-card:hover{ box-shadow: 0px 30px 60px -5px rgba(55,55,71,0.3); transform: translate3d(0,-5px,0); .mask-shadow{ opacity:1; box-shadow: 0px 30px 60px -5px rgba(55,55,71,0.3); position:absolute; } } .profile-card_2:hover{ box-shadow: 0px 30px 60px -5px rgba(55,55,71,0.3); transform: translate3d(0,-5px,0); .mask-shadow{ opacity:1; box-shadow: 0px 30px 60px -5px rgba(55,55,71,0.3); position:absolute; } } .profile-card header{ display:block; margin-bottom:10px; } .profile-card_2 header{ display:block; margin-bottom:10px; } .profile-card header a{ width:150px; height:150px; display:block; border-radius:100%; margin:-120px auto 0; box-shadow: 0 0 0 5px #82b541; } .profile-card_2 header a{ width:85%; height:85%; display:block; border-radius:10%; margin:-120px auto 0; box-shadow: 0 0 0 5px #82b541; } .profile-card header a img{ border-radius: 50%; width:150px; height:150px; } .profile-card_2 header a img{ border-radius: 10%; width:100%; height:100%; } .profile-card:hover header a, .profile-card header a:hover{ animation: bounceOut .4s linear; -webkit-animation: bounceOut .4s linear; } .profile-card_2:hover header a, .profile-card header a:hover{ animation: bounceOut .4s linear; -webkit-animation: bounceOut .4s linear; } .profile-card header h1{ font-size:20px; padding:20px; color:#444; text-transform:uppercase; margin-bottom:5px; } .profile-card_2 header h1{ font-size:20px; padding:20px; color:#444; text-transform:uppercase; margin-bottom:5px; } .profile-card header h2{ font-size:14px; color:#acacac; text-transform:uppercase; margin:0; } .profile-card_2 header h2{ font-size:14px; color:#acacac; text-transform:uppercase; margin:0; } /*content*/ .profile-bio{ font-size:14px; color:#a5a5a5; line-height:1.7; font-style: italic; margin-bottom:30px; } /*link social*/ .profile-social-links{ margin:0; padding:0; list-style:none; } .profile-social-links li{ display: inline-block; margin: 0 10px; } .profile-social-links li a{ width: 55px; height:55px; display:block; background:#f1f1f1; border-radius:50%; -webkit-transition: all 2.75s cubic-bezier(0,.83,.17,1); -moz-transition: all 2.75s cubic-bezier(0,.83,.17,1); -o-transition: all 2.75s cubic-bezier(0,.83,.17,1); transition: all 2.75s cubic-bezier(0,.83,.17,1); transform-style: preserve-3d; } .profile-social-links li a img{ width:35px; height:35px; margin:10px auto 0; } .profile-social-links li a:hover{ background:#ddd; transform: scale(1.2); -webkit-transform: scale(1.2); } /*animation hover effect*/ @-webkit-keyframes bounceOut { 0% { box-shadow: 0 0 0 4px #82b541; opacity: 1; } 25% { box-shadow: 0 0 0 1px #82b541; opacity: 1; } 50% { box-shadow: 0 0 0 7px #82b541; opacity: 1; } 75% { box-shadow: 0 0 0 4px #82b541; opacity: 1; } 100% { box-shadow: 0 0 0 5px #82b541; opacity: 1; } } @keyframes bounceOut { 0% { box-shadow: 0 0 0 6px #82b541; opacity: 1; } 25% { box-shadow: 0 0 0 2px #82b541; opacity: 1; } 50% { box-shadow: 0 0 0 9px #82b541; opacity: 1; } 75% { box-shadow: 0 0 0 3px #82b541; opacity: 1; } 100% { box-shadow: 0 0 0 5px #82b541; opacity: 1; } }</style></head>',
|
48 |
+
|
49 |
+
|
50 |
+
)
|
51 |
+
|
52 |
+
config = argparse.Namespace(**args_dict)
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# Preprocess text (username and link placeholders)
|
57 |
+
def preprocess(text):
|
58 |
+
text = text.lower()
|
59 |
+
new_text = []
|
60 |
+
for t in text.split(" "):
|
61 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
62 |
+
t = '' if t.startswith('http') else t
|
63 |
+
new_text.append(t)
|
64 |
+
# print(" ".join(new_text))
|
65 |
+
return " ".join(new_text)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
def test_with_sentance(text ,net ,tokenizer):
|
70 |
+
|
71 |
+
# text = "good morning"
|
72 |
+
text = preprocess(text)
|
73 |
+
|
74 |
+
# tc = TweetCleaner(remove_stop_words=True, remove_retweets=False)
|
75 |
+
# print('before : ' ,text)
|
76 |
+
# text = tc.get_cleaned_text(text)
|
77 |
+
# print('after : ' ,text)
|
78 |
+
|
79 |
+
net.eval()
|
80 |
+
encoded_input = tokenizer.encode(text, padding=True, truncation=True, return_tensors='pt')
|
81 |
+
net.to('cpu')
|
82 |
+
# print(type())
|
83 |
+
# encoded_input = {k: v.to(DEVICE) for k, v in encoded_input.items()}
|
84 |
+
output = net(encoded_input)
|
85 |
+
scores = output[0][0].detach().numpy()
|
86 |
+
scores = softmax(scores)
|
87 |
+
|
88 |
+
# download label mapping
|
89 |
+
labels=[]
|
90 |
+
mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/emoji/mapping.txt"
|
91 |
+
with urllib.request.urlopen(mapping_link) as f:
|
92 |
+
html = f.read().decode('utf-8').split("\n")
|
93 |
+
csvreader = csv.reader(html, delimiter='\t')
|
94 |
+
labels = [row[1] for row in csvreader if len(row) > 1]
|
95 |
+
|
96 |
+
ranking = np.argsort(scores)
|
97 |
+
ranking = ranking[::-1]
|
98 |
+
output_d = {}
|
99 |
+
for i in range(scores.shape[0]):
|
100 |
+
l = labels[ranking[i]]
|
101 |
+
s = scores[ranking[i]]
|
102 |
+
# print(f"{ranking[i]}) {l} {np.round(float(s), 4)}")
|
103 |
+
output_d[l] = np.round(float(s), 4)
|
104 |
+
|
105 |
+
if i == 2 :
|
106 |
+
# break
|
107 |
+
return output_d
|
108 |
+
|
109 |
+
# net.to('cuda:0')
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
list_interface = []
|
114 |
+
list_title = []
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
# BERT
|
122 |
+
|
123 |
+
def _method(text):
|
124 |
+
|
125 |
+
# tokenizer = AutoTokenizer.from_pretrained(config.CHECKPOINT_BERT)
|
126 |
+
# model_loaded = torch.load('/content/NEW_MODELS_Imbalance/Bert/g_ex3_bert_multi_fed_data_epoch_2.pt', map_location=torch.device('cpu'))
|
127 |
+
|
128 |
+
return test_with_sentance(text , config.model_Bert , config.tokenizer_Bert)
|
129 |
+
|
130 |
+
# greet("sun")
|
131 |
+
|
132 |
+
interface = gr.Interface(
|
133 |
+
|
134 |
+
fn = _method,
|
135 |
+
|
136 |
+
inputs=gr.Textbox(placeholder="Enter sentence here..."),
|
137 |
+
outputs="label",
|
138 |
+
examples=config.EX_LIST,
|
139 |
+
live = True,
|
140 |
+
|
141 |
+
|
142 |
+
title = 'BERT Multilingual',
|
143 |
+
|
144 |
+
description=config.description,
|
145 |
+
article = '',
|
146 |
+
|
147 |
+
)
|
148 |
+
list_interface.append(interface)
|
149 |
+
list_title.append('BERT Multilingual')
|
150 |
+
|
151 |
+
|
152 |
+
# XLM
|
153 |
+
|
154 |
+
def _method(text):
|
155 |
+
|
156 |
+
# tokenizer = AutoTokenizer.from_pretrained(config.CHECKPOINT_BERT)
|
157 |
+
# model_loaded = torch.load('/content/NEW_MODELS_Imbalance/Bert/g_ex3_bert_multi_fed_data_epoch_2.pt', map_location=torch.device('cpu'))
|
158 |
+
|
159 |
+
return test_with_sentance(text , config.model_XLM , config.tokenizer_XLM)
|
160 |
+
|
161 |
+
# greet("sun")
|
162 |
+
|
163 |
+
interface = gr.Interface(
|
164 |
+
|
165 |
+
fn = _method,
|
166 |
+
|
167 |
+
inputs=gr.Textbox(placeholder="Enter sentence here..."),
|
168 |
+
outputs="label",
|
169 |
+
examples=config.EX_LIST,
|
170 |
+
live = True,
|
171 |
+
|
172 |
+
|
173 |
+
title = 'XLM Roberta Multilingual',
|
174 |
+
|
175 |
+
description=config.description,
|
176 |
+
article = '',
|
177 |
+
|
178 |
+
)
|
179 |
+
list_interface.append(interface)
|
180 |
+
list_title.append('XLM Roberta Multilingual')
|
181 |
+
|
182 |
+
|
183 |
+
# MMiniLM
|
184 |
+
|
185 |
+
def _method(text):
|
186 |
+
|
187 |
+
# tokenizer = AutoTokenizer.from_pretrained(config.CHECKPOINT_BERT)
|
188 |
+
# model_loaded = torch.load('/content/NEW_MODELS_Imbalance/Bert/g_ex3_bert_multi_fed_data_epoch_2.pt', map_location=torch.device('cpu'))
|
189 |
+
|
190 |
+
return test_with_sentance(text , config.model_MMiniLM , config.tokenizer_MMiniLM)
|
191 |
+
|
192 |
+
# greet("sun")
|
193 |
+
|
194 |
+
interface = gr.Interface(
|
195 |
+
|
196 |
+
fn = _method,
|
197 |
+
|
198 |
+
inputs=gr.Textbox(placeholder="Enter sentence here..."),
|
199 |
+
outputs="label",
|
200 |
+
examples=config.EX_LIST,
|
201 |
+
live = True,
|
202 |
+
|
203 |
+
|
204 |
+
title = 'MiniLM Multilingual',
|
205 |
+
|
206 |
+
description=config.description,
|
207 |
+
article = '',
|
208 |
+
|
209 |
+
)
|
210 |
+
list_interface.append(interface)
|
211 |
+
list_title.append('MiniLM Multilingual')
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
# Switch
|
216 |
+
|
217 |
+
API_URL_Switch = "https://api-inference.huggingface.co/models/Karim-Gamal/switch-base-8-finetuned-SemEval-2018-emojis-IID-Fed"
|
218 |
+
headers_Switch = {"Authorization": "Bearer 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"}
|
219 |
+
|
220 |
+
|
221 |
+
def query_Switch(payload):
|
222 |
+
response = requests.post(API_URL_Switch, headers=headers_Switch, json=payload)
|
223 |
+
return response.json()
|
224 |
+
|
225 |
+
query_Switch({ "inputs": 'test',})
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
def _method(text):
|
230 |
+
text = preprocess(text)
|
231 |
+
output_temp = query_Switch({
|
232 |
+
"inputs": text,
|
233 |
+
})
|
234 |
+
|
235 |
+
text_to_emoji = {'red' : '❤', 'face': '😍', 'joy':'😂', 'love':'💕', 'fire':'🔥', 'smile':'😊', 'sunglasses':'😎', 'sparkle':'✨', 'blue':'💙', 'kiss':'😘', 'camera':'📷', 'USA':'🇺🇸', 'sun':'☀' , 'purple':'💜', 'blink':'😉', 'hundred':'💯', 'beam':'😁', 'tree':'🎄', 'flash':'📸', 'tongue':'😜'}
|
236 |
+
|
237 |
+
# Extract the dictionary from the list
|
238 |
+
try:
|
239 |
+
# code that may raise an exception
|
240 |
+
d = output_temp[0]
|
241 |
+
except:
|
242 |
+
pass
|
243 |
+
|
244 |
+
# Extract the text from the 'generated_text' key
|
245 |
+
text = d['generated_text']
|
246 |
+
|
247 |
+
# my_dict = {}
|
248 |
+
# my_dict[str(text_to_emoji[text.split(' ')[0]])] = 0.99
|
249 |
+
return text_to_emoji[text.split(' ')[0]]
|
250 |
+
|
251 |
+
|
252 |
+
# greet("sun")
|
253 |
+
|
254 |
+
interface = gr.Interface(
|
255 |
+
|
256 |
+
fn = _method,
|
257 |
+
|
258 |
+
inputs=gr.Textbox(placeholder="Enter sentence here..."),
|
259 |
+
outputs="text",
|
260 |
+
examples=config.EX_LIST,
|
261 |
+
live = True,
|
262 |
+
|
263 |
+
|
264 |
+
title = 'Switch-Base-8',
|
265 |
+
|
266 |
+
description=config.description,
|
267 |
+
article = '',
|
268 |
+
|
269 |
+
)
|
270 |
+
list_interface.append(interface)
|
271 |
+
list_title.append('Switch-Base-8')
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
# About us
|
276 |
+
|
277 |
+
def _method(input_rating):
|
278 |
+
|
279 |
+
# tokenizer = AutoTokenizer.from_pretrained(config.CHECKPOINT_BERT)
|
280 |
+
# model_loaded = torch.load('/content/NEW_MODELS_Imbalance/Bert/g_ex3_bert_multi_fed_data_epoch_2.pt', map_location=torch.device('cpu'))
|
281 |
+
|
282 |
+
if input_rating <=2:
|
283 |
+
return {'🔥': 0.6, '✨': 0.3, '💯': 0.1}
|
284 |
+
|
285 |
+
elif input_rating <= 4 and input_rating >2:
|
286 |
+
return {'✨': 0.6, '😉': 0.3, '💯': 0.1}
|
287 |
+
|
288 |
+
elif input_rating >4:
|
289 |
+
return {'😍': 0.6, '💯': 0.3, '💕': 0.1}
|
290 |
+
|
291 |
+
# return test_with_sentance(text , config.model_loaded_bert_multi_NONIID , config.tokenizer_bert)
|
292 |
+
|
293 |
+
# greet("sun")
|
294 |
+
|
295 |
+
interface = gr.Interface(
|
296 |
+
|
297 |
+
fn = _method,
|
298 |
+
|
299 |
+
inputs=gr.Slider(1, 5, value=4),
|
300 |
+
outputs="label",
|
301 |
+
# examples=config.EX_LIST,
|
302 |
+
live = True,
|
303 |
+
|
304 |
+
|
305 |
+
title = 'About us',
|
306 |
+
|
307 |
+
description='We don\'t have sad emoji so our rating will always be great. 😂',
|
308 |
+
|
309 |
+
# CSS Source : https://codepen.io/bibiangel199/pen/warevP
|
310 |
+
|
311 |
+
article = config.article + '<!-- this is the markup. you can change the details (your own name, your own avatar etc.) but don’t change the basic structure! --> <div class="div_table_"> <table class="table"> <tr> <td><aside class="profile-card"> <div class="mask-shadow"></div> <header> <!-- here’s the avatar --> <a href="https://www.linkedin.com/in/hossam-amer-23b9329b/"> <img src="https://drive.google.com/uc?export=view&id=1-C_UIimeqbofJC_lldC7IQzIOX_OYRSn"> </a> <!-- the username --> <h1 style = " font-size:20px; padding:20px; color:#444; margin-bottom:5px; " >Dr. Hossam Amer</h1> <!-- and role or location --> <h2 style = " font-size:14px; color:#acacac; text- margin:0; " >Research Scientist at Microsoft</h2> </header> </aside></td> </tr> </table> </div> <div class="div_table_"> <table class="table"> <tr> <td><aside class="profile-card"> <div class="mask-shadow"></div> <header> <!-- here’s the avatar --> <a href="https://www.linkedin.com/in/ahmed-mohamed-gaber-143b25175/"> <img src="https://drive.google.com/uc?export=view&id=1OiGZwhL23PYhIJzQexYvPDFRrgUIprMj"> </a> <!-- the username --> <h1 style = " font-size:20px; padding:20px; color:#444; margin-bottom:5px; ">Ahmed Gaber</h1> <!-- and role or location --> <h2 style = " font-size:14px; color:#acacac; text- margin:0; " >Master\'s student at Queen\'s University</h2> </header> </aside></td> <td><aside class="profile-card"> <div class="mask-shadow"></div> <header> <!-- here’s the avatar --> <a href="https://www.linkedin.com/in/karim-gamal-mahmoud/"> <img src="https://drive.google.com/uc?export=view&id=1Lg2RzimITL9y__X2hycBTX10rJ4o87Ax"> </a> <!-- the username --> <h1 style=" font-size:20px; padding:20px; color:#444; margin-bottom:5px; ">Karim Gamal</h1> <!-- and role or location --> <h2 style = " font-size:14px; color:#acacac; text- margin:0; " >Master\'s student at Queen\'s University</h2> </header> </aside></td> </tr> </table> </div>',
|
312 |
+
)
|
313 |
+
list_interface.append(interface)
|
314 |
+
list_title.append('About us')
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
demo = gr.TabbedInterface(
|
319 |
+
list_interface,
|
320 |
+
list_title,
|
321 |
+
title='Multilingual Emoji Prediction Using Federated Learning',
|
322 |
+
css='.gradio-container {color : orange}',)
|
323 |
+
# css='.gradio-container {background-color: white; color : orange}',)
|
324 |
+
demo.launch()
|
325 |
+
|
326 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers[sentencepiece]
|
2 |
+
argparse
|
3 |
+
torch
|
4 |
+
scipy
|
5 |
+
python-csv
|
6 |
+
urllib3
|
7 |
+
numpy
|