File size: 30,489 Bytes
d4a9e0f 74a4847 17e0a7f 74a4847 d4a9e0f 74a4847 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f a260490 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f 74a4847 d4a9e0f a260490 d4a9e0f 74a4847 a260490 d4a9e0f 74a4847 a260490 d4a9e0f 74a4847 d4a9e0f 42df7a2 17e0a7f a260490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
import sys
import json
import os
import requests
from dotenv import load_dotenv
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from openai import AzureOpenAI
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from dotted_dict import DottedDict
from langchain_community.vectorstores import Chroma
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
from py.data_fetch import DataFetch
from py.handle_files import *
from py.db_storage import DBStorage
from langchain.callbacks import get_openai_callback
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import yfinance as yf
class StockAdviserConfig:
def __init__(self):
load_dotenv()
self.azure_config = {
"base_url": os.getenv("AZURE_OPENAI_ENDPOINT"),
"embedding_base_url": os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT"),
"model_deployment": os.getenv("AZURE_OPENAI_MODEL_DEPLOYMENT_NAME"),
"model_name": os.getenv("AZURE_OPENAI_MODEL_NAME"),
"embedding_deployment": os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME"),
"embedding_name": os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
"api-key": os.getenv("AZURE_OPENAI_API_KEY"),
"api_version": os.getenv("AZURE_OPENAI_API_VERSION")
}
self.models = DottedDict()
class StockAdviserUI:
def __init__(self):
st.set_page_config(page_title="GEN AI Stock Adviser by Karthikeyen", layout="wide",
initial_sidebar_state="expanded")
self._setup_css()
self._setup_header()
def _setup_css(self):
st.markdown("""
<style>
.main-header {
text-align: center;
padding-right: 20px;
padding-left: 20px;
color: #E9EBED;
# margin-bottom: 2rem;
}
.little-header {
# text-align: center;
# padding-right: 20px;
# padding-left: 20px;
color: #E9EBED;
# margin-bottom: 2rem;
}
.main-header2 {
text-align: left;
color: #E9EBED;
}
.column-header {
color: #FFFF9E;
border-bottom: 2px solid #eee;
padding-bottom: 10px;
margin-bottom: 1.5rem;
}
.column-header2 {
color: #CEFFFF;
padding-top: 5px;
padding-bottom: 5px;
}
.content-section {
background-color: #f8f9fa;
padding: 15px;
border-radius: 5px;
margin-top: 10px;
}
.metric-card {
background-color: #1E1E1E;
padding: 1rem;
border-radius: 8px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
margin-bottom: 1rem;
}
.metric-title {
font-size: 0.9rem;
color: #888;
margin-bottom: 0.5rem;
}
.metric-value {
font-size: 1.5rem;
font-weight: bold;
color: #fff;
}
</style>
""", unsafe_allow_html=True)
def _setup_header(self):
st.markdown("<h1 class='main-header'>Stock Analysis with Generative AI</h1>", unsafe_allow_html=True)
st.markdown("<h3 class='main-header'>using RAG</h3>", unsafe_allow_html=True)
with st.expander("Available Historical Demo Companies"):
st.markdown("""
For Demo purpose, historical data is available only for the below companies:
- Reliance Industries (RELIANCE)
- HDFC Bank (HDFCBANK)
- Hindustan Unilever (HINDUNILVR)
- Bharti Airtel (BHARTIARTL)
- Asian Paints (ASIANPAINT)
- Maruti Suzuki India (MARUTI)
""", unsafe_allow_html=True)
class StockDataVisualizer:
@staticmethod
def create_price_chart(df, symbol):
fig = go.Figure()
fig.add_trace(go.Candlestick(
x=df.index,
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['Close'],
name='OHLC'
))
fig.update_layout(
title=f'{symbol} Stock Price Movement',
yaxis_title='Stock Price (INR)',
template='plotly_dark',
xaxis_rangeslider_visible=False,
height=500
)
return fig
@staticmethod
def create_volume_chart(df, symbol):
fig = go.Figure()
fig.add_trace(go.Bar(
x=df.index,
y=df['Volume'],
name='Volume',
marker_color='rgba(0, 150, 255, 0.6)'
))
fig.update_layout(
title=f'{symbol} Trading Volume',
yaxis_title='Volume',
template='plotly_dark',
height=300
)
return fig
@staticmethod
def create_sentiment_gauge(sentiment_score):
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=sentiment_score,
domain={'x': [0, 1], 'y': [0, 1]},
gauge={
'axis': {'range': [-1, 1]},
'bar': {'color': "rgba(0, 150, 255, 0.6)"},
'steps': [
{'range': [-1, -0.25], 'color': "red"},
{'range': [-0.25, 0.25], 'color': "yellow"},
{'range': [0.25, 1], 'color': "green"}
]
},
title={'text': "Sentiment Score"}
))
fig.update_layout(
template='plotly_dark',
height=250
)
return fig
class StockAdviser:
def __init__(self):
self.config = StockAdviserConfig()
self.ui = StockAdviserUI()
self.visualizer = StockDataVisualizer()
self.client = AzureOpenAI(
azure_endpoint=self.config.azure_config["base_url"],
api_key=self.config.azure_config["api-key"],
api_version="2024-02-01"
)
def create_models(self):
print("creating models")
llm = AzureChatOpenAI(
temperature=0,
api_key=self.config.azure_config["api-key"],
openai_api_version=self.config.azure_config["api_version"],
azure_endpoint=self.config.azure_config["base_url"],
model=self.config.azure_config["model_deployment"],
validate_base_url=False
)
embedding_model = AzureOpenAIEmbeddings(
api_key=self.config.azure_config["api-key"],
openai_api_version=self.config.azure_config["api_version"],
azure_endpoint=self.config.azure_config["embedding_base_url"],
model=self.config.azure_config["embedding_deployment"]
)
self.config.models.llm = llm
self.config.models.embedding_model = embedding_model
return self.config.models
def get_symbol(self, user_question):
qna_system_message = """
You are an assistant to a financial services firm who finds the 'nse company symbol' (assigned to the company in the provided stock market)) of the company in the question provided.
User questions will begin with the token: ###Question.
Please find the 'nse company symbol' of the company in the question provided. In case of an invalid company, return "NOTICKER".
Response format:
{nse company symbol}
Do not mention anything about the context in your final answer. Stricktly respond only the company symbol.
"""
qna_user_message_template = """
###Question
{question}
"""
prompt = [
{'role': 'system', 'content': qna_system_message},
{'role': 'user', 'content': qna_user_message_template.format(question=user_question)}
]
try:
response = self.client.chat.completions.create(
model=self.config.azure_config["model_name"],
messages=prompt,
temperature=0
)
cmp_tkr = response.choices[0].message.content.strip()
except Exception as e:
cmp_tkr = f'Sorry, I encountered the following error: \n {e}'
st.write("Reply: ", cmp_tkr)
return
print(cmp_tkr)
return cmp_tkr
def process_historical_data(self, user_question, hugg = False):
cmp_tr = self.get_symbol(user_question)
# Initialize ChromaDB Database
chroma_db = DBStorage(hugg)
FAISS_DB_PATH = os.path.join(os.getcwd(), "Stock Sentiment Analysis", "faiss_HD")
if hugg:
FAISS_DB_PATH = os.path.join(os.getcwd(), "faiss_HD")
chroma_db.load_vectors(FAISS_DB_PATH)
context_for_query = chroma_db.get_context_for_query(cmp_tr, k=5)
sentiment_response = self._get_sentiment_analysis(context_for_query, cmp_tr)
self._display_sentiment(sentiment_response)
return cmp_tr
def display_charts(self,cmp_tr,sentiment_response):
sentiment = self._extract_between(sentiment_response, "Overall Sentiment:", "Overall Justification:").strip()
days = 365
print(f"\nFetching {days} days of stock data for {cmp_tr}...")
df, analysis = self.get_nse_stock_data(cmp_tr, days)
print("df,analysis")
print(len(df))
print(len(analysis))
if len(analysis) != 0:
# Create metrics cards
col0, col1, col2, col3 = st.columns(4)
# Simulate some metric data (replace with real data in production)\
with col0:
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">current price & volume</div>
<div class="metric-value">₹{analysis['current_price']:,}</div>
<div>{int(analysis['current_volume']):,}</div>
</div>
""", unsafe_allow_html=True)
with col1:
self._create_metric_card(f"52-Week High on {analysis['week_52_high_date']}",
f"₹{analysis['week_52_high']:,.2f}",
self.format_percentage(analysis['pct_from_52w_high']))
with col2:
self._create_metric_card(f"52-Week Low on {analysis['week_52_low_date']}",
f"₹{analysis['week_52_low']:,.2f}",
self.format_percentage(analysis['pct_from_52w_low']))
with col3:
self._create_metric_card("Average Volume",
f"{int(analysis['avg_volume']):,}",
f"{self.format_percentage(analysis['volume_pct_diff'])}")
# Display price chart
st.plotly_chart(self.visualizer.create_price_chart(df, cmp_tr))
# Display volume chart
st.plotly_chart(self.visualizer.create_volume_chart(df, cmp_tr))
# Display sentiment gauge (simulate sentiment score)
# Generating random score for Demo purpose
if sentiment == "Negative":
sentiment_score = np.random.uniform(-1, -0.75)
elif sentiment == "Neutral":
sentiment_score = np.random.uniform(-0.75, 0.25)
elif sentiment == "Positive":
sentiment_score = np.random.uniform(0.25, 1)
else:
sentiment_score = 0
st.plotly_chart(self.visualizer.create_sentiment_gauge(sentiment_score))
def get_nse_stock_data(self,symbol, days):
"""
Fetch stock data and perform extended analysis including 52-week highs/lows
and volume comparisons.
Args:
symbol (str): NSE stock symbol (e.g., 'RELIANCE.NS')
Returns:
tuple: (DataFrame of daily data, dict of analysis metrics)
"""
try:
# Add .NS suffix if not present
if not symbol.endswith('.NS'):
symbol = f"{symbol}.NS"
# Create Ticker object and fetch 1 year of data
ticker = yf.Ticker(symbol)
# Get last 90 days of data
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
df_90d = ticker.history(start=start_date, end=end_date)
# Get 1 year of data for 52-week analysis
start_date_52w = end_date - timedelta(days=365)
df_52w = ticker.history(start=start_date_52w, end=end_date)
# Create main DataFrame with 90-day data
df = pd.DataFrame({
'Open': df_90d['Open'],
'High': df_90d['High'],
'Low': df_90d['Low'],
'Close': df_90d['Close'],
'Volume': df_90d['Volume']
}, index=df_90d.index)
# Round numerical values
df[['Open', 'High', 'Low', 'Close']] = df[['Open', 'High', 'Low', 'Close']].round(2)
df['Volume'] = df['Volume'].astype(int)
# Get current price (latest close)
current_price = df['Close'].iloc[-1]
# Calculate 52-week metrics
week_52_high = df_52w['High'].max()
week_52_low = df_52w['Low'].min()
# Calculate percentage differences
pct_from_52w_high = ((current_price - week_52_high) / week_52_high) * 100
pct_from_52w_low = ((current_price - week_52_low) / week_52_low) * 100
# Volume analysis
current_volume = df['Volume'].iloc[-1]
avg_volume = df_52w['Volume'].mean()
volume_pct_diff = ((current_volume - avg_volume) / avg_volume) * 100
# Find dates of 52-week high and low
high_date = df_52w[df_52w['High'] == week_52_high].index[0].strftime('%Y-%m-%d')
low_date = df_52w[df_52w['Low'] == week_52_low].index[0].strftime('%Y-%m-%d')
# Create analysis metrics dictionary
analysis = {
'current_price': current_price,
'week_52_high': week_52_high,
'week_52_high_date': high_date,
'week_52_low': week_52_low,
'week_52_low_date': low_date,
'pct_from_52w_high': pct_from_52w_high,
'pct_from_52w_low': pct_from_52w_low,
'current_volume': current_volume,
'avg_volume': avg_volume,
'volume_pct_diff': volume_pct_diff
}
print(analysis)
return df, analysis
except Exception as e:
print(f"Error fetching data: {str(e)}")
return [], []
def format_percentage(self, value):
"""Format percentage with + or - sign"""
return f"+{value:.2f}%" if value > 0 else f"{value:.2f}%"
def process_realtime_data(self, cmp_tr, hugg = False):
if cmp_tr == "NOTICKER":
st.write("No valid company in the query.")
return
data_fetch = DataFetch()
query_context = []
# Create a placeholder for the current source
source_status = st.empty()
# Collect data from various sources
data_sources = [
("Reddit", data_fetch.collect_reddit_data),
("YouTube", data_fetch.collect_youtube_data),
("Tumblr", data_fetch.collect_tumblr_data),
("Google News", data_fetch.collect_google_news),
("Financial Times", data_fetch.collect_financial_times),
("Bloomberg", data_fetch.collect_bloomberg),
("Reuters", data_fetch.collect_reuters)
]
st_status = ""
for source_name, collect_func in data_sources:
st_status = st_status.replace("Currently fetching", "Fetched") + f"📡 Currently fetching data from: {source_name} \n \n"
source_status.write(st_status, unsafe_allow_html=True)
print(f"Collecting {source_name} Data")
query_context.extend(collect_func(cmp_tr))
st_status = st_status.replace("Currently fetching", "Fetched") + "📡 Currently fetching data from: Serper - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc."
source_status.write(st_status, unsafe_allow_html=True)
print("Collecting Serper Data")
query_context.extend(data_fetch.search_news(cmp_tr, 100))
# Process collected data
db_store = DBStorage(hugg)
FAISS_DB_PATH = os.path.join(os.getcwd(), "Stock Sentiment Analysis", "faiss_RD")
if hugg:
FAISS_DB_PATH = os.path.join(os.getcwd(), "faiss_RD")
db_store.embed_vectors(to_documents(query_context), FAISS_DB_PATH)
db_store.load_vectors(FAISS_DB_PATH)
context_for_query = db_store.get_context_for_query(cmp_tr, k=5)
sentiment_response = self._get_sentiment_analysis(context_for_query, cmp_tr, is_realtime=True)
self._display_sentiment(sentiment_response)
# Clear the status message after all sources are processed
source_status.empty()
return sentiment_response
def _create_metric_card(self, title, value, change):
st.markdown(f"""
<div class="metric-card">
<div class="metric-title">{title}</div>
<div class="metric-value">{value}</div>
<div style="color: {'green' if float(change.strip('%')) > 0 else 'red'}">
{change}
</div>
</div>
""", unsafe_allow_html=True)
def _get_sentiment_analysis(self, context, cmp_tr, is_realtime=False):
system_message, dcument = self._get_system_prompt(is_realtime)
user_message = f"""
###Context
Here are some list of {dcument} that are relevant to the question mentioned below.
{context}
###Question
{cmp_tr}
"""
try:
response = self.client.chat.completions.create(
model=self.config.azure_config["model_name"],
messages=[
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': user_message}
],
temperature=0
)
return response.choices[0].message.content.strip()
except Exception as e:
return f'Sorry, I encountered the following error: \n {e}', ""
def _display_sentiment(self, prediction):
sentiment = self._extract_between(prediction, "Overall Sentiment:", "Overall Justification:").strip()
print("Sentiment: "+ sentiment)
print(prediction)
if sentiment == "Positive":
st.success("Positive : Go Ahead...!")
elif sentiment == "Negative":
st.warning("Negative : Don't...!")
elif sentiment == "Neutral":
st.info("Neutral : Need to Analyse further")
st.write(prediction, unsafe_allow_html=True)
@staticmethod
def _extract_between(text: str, start: str, end: str) -> str:
try:
start_pos = text.find(start)
if start_pos == -1:
return ""
start_pos += len(start)
end_pos = text.find(end, start_pos)
if end_pos == -1:
return ""
return text[start_pos:end_pos]
except (AttributeError, TypeError):
return ""
@staticmethod
def _get_system_prompt(is_realtime):
"""
Returns the appropriate system prompt based on whether it's realtime or historical data analysis.
Args:
is_realtime (bool): Flag indicating if this is for realtime data analysis
Returns:
str: The complete system prompt for the sentiment analysis
"""
if is_realtime:
response_format = """
Response Formats:
Only If the Question is 'NOTICKER':
No valid company in the query.
Else, If the context does not have relevent data for the company:
Respond "Company {Company name} {nse company symbol}({symbol}) details not found in the RealTime Data".
"""
citation_format = """
Citations: [Generate few citations based on the links provided. Mention Source ('platform') and Title('title'), linking them with url from corresponding 'link' ]
"""
instr2 = """
Stricktly Never mention 'document'/'documents', not even once. Instead mention it as 'Real-Time Social media and News data'
"""
dcument = "Real-Time Social media and News data"
dcuments = "List of 'Real-Time Social media and News data'"
else:
response_format = """
Response Formats:
If the Question value is "NOTICKER":
No valid company in the query.
If the context does not have relevent data for the company (Question value):
Respond "Company {Company name} {nse company symbol}({symbol}) details not found in the Historical Data".
"""
citation_format = ""
instr2 = """
Never mention 'document'/'documents', not even once. Instead mention it as 'Historical Social media and News data'
"""
dcument = "Historical Social media and News data"
dcuments = "List of 'Historical Social media and News data'"
instr = f"""
Please follow the steps to analyze the sentiment of each {dcument}'s content; and strictly follow exact structure illustrated in above example response to provide an overall sentiment, justification and give stock purchase advice. Provide only Overall response, don't provide documentwise response or any note. Decorate the response with html/css tags.
"""
common_format = f"""
else, If the content parts of context has relevent data:
Overall Sentiment: [Positive/Negative/Neutral] <line break>
Overall Justification: [Detailed analysis of why the sentiment was chosen, summarizing key points from the {dcuments}] <line break>
Stock Advice: [Clear recommendation on whether to purchase the stock, based on the sentiment analysis and justification]
"""
base_prompt = f"""
You are an assistant to a financial services firm who answers user queries on Stock Investments.
User input will have the context required by you to answer user questions.
This context will begin with the token: ###Context.
The context contains references to specific portions of a {dcument} relevant to the user query.
Each document is a {dcument}.
User questions will begin with the token: ###Question.
First, find the 'nse company symbol' of the related company in the question provided.
Your task is to perform sentiment analysis on the content part of each {dcuments} provided in the Context, which discuss a company identified by its 'nse company symbol'. The goal is to determine the overall sentiment expressed across all {dcuments} and provide an overall justification. Based on the sentiment analysis, give a recommendation on whether the company's stock should be purchased.
Step-by-Step Instructions:
1. See if the question is "NOTICKER". If so, give response and don't proceed.
2. If the company in question is not found in the context, give the corresponding response and don't proceed.
3. Read the Context: Carefully read the content parts of each {dcument} provided in the list of {dcuments}.
4. Determine Overall Sentiment: Analyze the sentiment across all {dcuments} and categorize the overall sentiment as Positive, Negative, or Neutral.
5. Provide Overall Justification: Summarize the key points from all {dcuments} to justify the overall sentiment.
6. Stock Advice: Based on the overall sentiment and justification, provide a recommendation on whether the company's stock should be purchased.
"""
example_analysis = """
Example Analysis:
Context:
[Document(metadata={'platform': 'Moneycontrol', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 134}, page_content="{'title': 'Asian Paints launches Neo Bharat Latex Paint to tap on booming demand', 'content': 'The company, which is the leading player in India, touts the new segment to being affordable, offering over 1000 shades for consumers.'}"), Document(metadata={'platform': 'MarketsMojo', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 128}, page_content="{'title': 'Asian Paints Ltd. Stock Performance Shows Positive Trend, Outperforms Sector by 0.9%', 'content': 'Asian Paints Ltd., a leading player in the paints industry, has seen a positive trend in its stock performance on July 10, 2024.'}"), Document(metadata={'platform': 'Business Standard', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 138}, page_content="{'title': 'Asian Paints, Indigo Paints, Kansai gain up to 5% on falling oil prices', 'content': 'Shares of paint companies were trading higher on Wednesday, rising up to 5 per cent on the BSE, on the back of a fall in crude oil prices.'}")]
"""
return base_prompt + example_analysis + response_format + common_format + citation_format + instr + instr2, dcument
def main(hugg):
adviser = StockAdviser()
# Create sidebar for filters and settings
st.logo(
"https://cdn.shopify.com/s/files/1/0153/8513/3156/files/info_omac.png?v=1595717396",
size="large"
)
with st.sidebar:
# About the Application
st.markdown("""
<div style="background-color: #2d2d2d; padding: 20px; border-radius: 10px; box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1);">
<h2 style="color: #e6e6e6; text-align: Left;">About the Application</h2>
<p style="font-size: 16px; color: #cccccc; line-height: 1.6; text-align: justify;">
This application provides investment managers with daily insights into social media and news sentiment surrounding specific stocks and companies.
By analyzing posts and articles across major platforms such as <strong>Reddit</strong>, <strong>YouTube</strong>, <strong>Tumblr</strong>, <strong>Google News</strong>,
<strong>Financial Times</strong>, <strong>Bloomberg</strong>, <strong>Reuters</strong>, and <strong>Wall Street Journal</strong> (WSJ), it detects shifts
in public and media opinion that may impact stock performance.
</p>
<p style="font-size: 16px; color: #cccccc; line-height: 1.6; text-align: justify;">
Additionally, sources like <strong>Serper</strong> provide data from <strong>StockNews</strong>, <strong>Yahoo Finance</strong>, <strong>Insider Monkey</strong>,
<strong>Investor's Business Daily</strong>, and others. Using advanced AI techniques, the application generates a sentiment report that serves as a leading indicator,
helping managers make informed, timely adjustments to their positions. With daily updates and historical trend analysis, it empowers users to stay ahead in a fast-paced,
sentiment-driven market.
</p>
</div>
""", unsafe_allow_html=True)
# Sidebar Footer (Floating Footer)
st.sidebar.markdown("""
<div style="position: fixed; bottom: 5px; padding: 5px; background-color: #1f1f1f; border-radius: 5px; text-align: left;">
<p style="color: #cccccc; font-size: 14px;">
Developed by: <a href="https://www.linkedin.com/in/karthikeyen92/" target="_blank" style="color: #4DA8DA; text-decoration: none;">Karthikeyen Packirisamy</a>
</p>
</div>
""", unsafe_allow_html=True)
# Main content
cmp_tr = "NOTICKER"
st.header("Ask a question")
user_question = st.text_input("Ask a stock advice related question", key="user_question")
col1, col2 = st.columns(2)
with col1:
if user_question:
st.markdown("<h3 class='little-header'>Historical Analysis</h3>", unsafe_allow_html=True)
with st.container():
cmp_tr = adviser.process_historical_data(user_question, hugg)
with col2:
if user_question:
st.markdown("<h3 class='little-header'>Real-Time Analysis</h3>", unsafe_allow_html=True)
with st.container():
sentiment_response = adviser.process_realtime_data(cmp_tr, hugg)
if (str(cmp_tr) != "NOTICKER"):
with st.container():
if user_question:
adviser.display_charts(cmp_tr,sentiment_response)
st.markdown("---")
st.markdown("<p style='text-align: center; color: #666;'>© 2024 EY</p>", unsafe_allow_html=True)
if __name__ == "__main__":
hugg = True
hugg = False
main(hugg) |