File size: 38,915 Bytes
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fc8fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
 
 
 
 
74a4847
 
 
 
17e0a7f
 
74a4847
 
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a4847
dd16aed
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd16aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cccd89e
 
 
 
 
 
 
dd16aed
 
 
 
 
d4a9e0f
 
3901eba
d4a9e0f
 
 
3901eba
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd16aed
d4a9e0f
 
a260490
 
 
 
d4a9e0f
 
 
 
 
 
 
 
dd16aed
d4a9e0f
 
 
 
 
 
a260490
 
 
d4a9e0f
a260490
 
d4a9e0f
a260490
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
a260490
 
 
dd16aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a260490
d4a9e0f
 
 
 
 
 
a260490
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a260490
 
 
 
 
 
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a4847
d4a9e0f
 
74a4847
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a4847
d4a9e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74a4847
 
 
 
 
 
 
 
 
 
 
9fc8fd3
74a4847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
 
 
74a4847
 
d4a9e0f
 
 
 
74a4847
d4a9e0f
 
 
 
74a4847
 
 
d4a9e0f
74a4847
 
d4a9e0f
 
 
 
 
 
74a4847
d4a9e0f
dd16aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
a260490
d4a9e0f
 
 
 
 
 
 
 
 
 
dd16aed
d4a9e0f
 
dd16aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
dd16aed
 
 
 
d4a9e0f
 
 
dd16aed
d4a9e0f
 
dd16aed
 
d4a9e0f
 
 
 
dd16aed
d4a9e0f
 
 
 
9fc8fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4a9e0f
9fc8fd3
 
 
 
 
 
 
 
 
dd16aed
 
 
 
 
 
 
 
d4a9e0f
dd16aed
d4a9e0f
 
4bfd700
 
a260490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
import sys
import json
import os
import requests
from dotenv import load_dotenv
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
from openai import AzureOpenAI
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from dotted_dict import DottedDict
from langchain_community.vectorstores import Chroma
from langchain_openai import AzureChatOpenAI, AzureOpenAIEmbeddings
from py.data_fetch import DataFetch
from py.handle_files import *
from py.db_storage import DBStorage
from langchain.callbacks import get_openai_callback
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
import yfinance as yf

class StockAdviserConfig:
    def __init__(self):
        load_dotenv()
        self.azure_config = {
            "base_url": os.getenv("AZURE_OPENAI_ENDPOINT"),
            "embedding_base_url": os.getenv("AZURE_OPENAI_EMBEDDING_ENDPOINT"),
            "model_deployment": os.getenv("AZURE_OPENAI_MODEL_DEPLOYMENT_NAME"),
            "model_name": os.getenv("AZURE_OPENAI_MODEL_NAME"),
            "embedding_deployment": os.getenv("AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME"),
            "embedding_name": os.getenv("AZURE_OPENAI_EMBEDDING_NAME"),
            "api-key": os.getenv("AZURE_OPENAI_API_KEY"),
            "api_version": os.getenv("AZURE_OPENAI_API_VERSION")
        }
        self.models = DottedDict()

class StockAdviserUI:
    def __init__(self):
        st.set_page_config(page_title="GEN AI Stock Adviser by Karthikeyen", layout="wide",
                           initial_sidebar_state="expanded")
        self._setup_css()
        self._setup_header()

    def _setup_css(self):
        st.markdown("""
            <style>
             /* Make the top bar transparent */
            .css-18e3th9 {  /* Class for main content area */
                padding-top: 0rem;
            }
            
            .css-1d391kg {  /* Class for the header section */
                background-color: rgba(0, 0, 0, 0) !important;  /* Make transparent */
                box-shadow: none;  /* Remove shadow if there is one */
            }
              /* Target the first markdown element in the Streamlit app */
            .css-1v0mbdj {
                font-size: 0px !important;
                height: 0px !important;
                padding: 0px !important;
                margin: 0px !important;
            }
             /* Reduce or remove the top margin */
            .css-18e3th9 {
                padding-top: 0rem;
            }
            .css-1v3fvcr {
                padding-top: 1rem;
            }
            .main-header {
                text-align: center;
                padding-right: 20px;
                padding-left: 20px;
                color: #E9EBED;
                # margin-bottom: 2rem;
            }
            .little-header {
                # text-align: center;
                # padding-right: 20px;
                # padding-left: 20px;
                color: #E9EBED;
                # margin-bottom: 2rem;
            }
            .main-header2 {
                text-align: left;
                color: #E9EBED;
            }
            .column-header {
                color: #FFFF9E;
                border-bottom: 2px solid #eee;
                padding-bottom: 10px;
                margin-bottom: 1.5rem;
            }
            .column-header2 {
                color: #CEFFFF;
                padding-top: 5px;
                padding-bottom: 5px;
            }
            .content-section {
                background-color: #f8f9fa;
                padding: 15px;
                border-radius: 5px;
                margin-top: 10px;
            }
            .metric-card {
                background-color: #1E1E1E;
                padding: 1rem;
                border-radius: 8px;
                box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
                margin-bottom: 1rem;
            }
            .metric-title {
                font-size: 0.9rem;
                color: #888;
                margin-bottom: 0.5rem;
            }
            .metric-value {
                font-size: 1.5rem;
                font-weight: bold;
                color: #fff;
            }
            </style>
            """, unsafe_allow_html=True)

    def _setup_header(self):
        st.markdown("<h1 class='main-header'>Stock Analysis with Generative AI</h1>", unsafe_allow_html=True)
        st.markdown("<h3 class='main-header'>using Agents and RAG</h3>", unsafe_allow_html=True)
        with st.expander("Available Historical Demo Companies"):
            st.markdown("""
                For Demo purpose, historical data is available only for the below companies:
                - Reliance Industries (RELIANCE)
                - HDFC Bank (HDFCBANK)
                - Hindustan Unilever (HINDUNILVR)
                - Bharti Airtel (BHARTIARTL)
                - Asian Paints (ASIANPAINT)
                - Maruti Suzuki India (MARUTI)
            """, unsafe_allow_html=True)

class StockDataVisualizer:
    @staticmethod
    def create_price_chart(df, symbol):
        fig = go.Figure()
        
        fig.add_trace(go.Candlestick(
            x=df.index,
            open=df['Open'],
            high=df['High'],
            low=df['Low'],
            close=df['Close'],
            name='OHLC'
        ))
        
        fig.update_layout(
            title=f'{symbol} Stock Price Movement',
            yaxis_title='Stock Price (INR)',
            template='plotly_dark',
            xaxis_rangeslider_visible=False,
            height=500
        )
        
        return fig

    @staticmethod
    def create_volume_chart(df, symbol):
        fig = go.Figure()
        
        fig.add_trace(go.Bar(
            x=df.index,
            y=df['Volume'],
            name='Volume',
            marker_color='rgba(0, 150, 255, 0.6)'
        ))
        
        fig.update_layout(
            title=f'{symbol} Trading Volume',
            yaxis_title='Volume',
            template='plotly_dark',
            height=300
        )
        
        return fig

    @staticmethod
    def create_sentiment_gauge(sentiment_score):
        fig = go.Figure(go.Indicator(
            mode="gauge+number",
            value=sentiment_score,
            domain={'x': [0, 1], 'y': [0, 1]},
            gauge={
                'axis': {'range': [-1, 1]},
                'bar': {'color': "rgba(0, 150, 255, 0.6)"},
                'steps': [
                    {'range': [-1, -0.25], 'color': "red"},
                    {'range': [-0.25, 0.25], 'color': "yellow"},
                    {'range': [0.25, 1], 'color': "green"}
                ]
            },
            title={'text': "Sentiment Score"}
        ))
        
        fig.update_layout(
            template='plotly_dark',
            height=250
        )
        
        return fig

class StockAdviser:
    def __init__(self):
        self.config = StockAdviserConfig()
        self.ui = StockAdviserUI()
        self.visualizer = StockDataVisualizer()
        self.client = AzureOpenAI(
            azure_endpoint=self.config.azure_config["base_url"],
            api_key=self.config.azure_config["api-key"],
            api_version="2024-02-01"
        )


    def create_models(self):
        print("creating models")
        llm = AzureChatOpenAI(
            temperature=0,
            api_key=self.config.azure_config["api-key"],
            openai_api_version=self.config.azure_config["api_version"],
            azure_endpoint=self.config.azure_config["base_url"],
            model=self.config.azure_config["model_deployment"],
            validate_base_url=False
        )
        embedding_model = AzureOpenAIEmbeddings(
            api_key=self.config.azure_config["api-key"],
            openai_api_version=self.config.azure_config["api_version"],
            azure_endpoint=self.config.azure_config["embedding_base_url"],
            model=self.config.azure_config["embedding_deployment"]
        )
        self.config.models.llm = llm
        self.config.models.embedding_model = embedding_model
        return self.config.models

    def stock_agent(self, user_question):
        functions=[
                {
                    "name":"get_advise",
                    "description":"Get only advise on a NSE stock",
                    "parameters":{
                        "type":"object",
                        "properties":{
                            "company":{
                                "type":"string",
                                "description":"Please find the 'nse company symbol' of the company in the question provided. In case of an invalid company, return 'NOTICKER'.",
                            },
                            
                        },
                        "required":["company"]
                    },
                },
                {
                    "name":"get_stats",
                    "description":"Get only statistics/status on a NSE stock",
                    "parameters":{
                        "type":"object",
                        "properties":{
                            "company":{
                                "type":"string",
                                "description":"Please find the 'nse company symbol' of the company in the question provided. In case of an invalid company, return 'NOTICKER'.",
                            },
                            
                        },
                        "required":["company"]
                    },
                },
                {
                    "name":"get_adv_stats",
                    "description":"Get both advise and statistics/status on a NSE stock",
                    "parameters":{
                        "type":"object",
                        "properties":{
                            "company":{
                                "type":"string",
                                "description":"Please find the 'nse company symbol' of the company in the question provided. In case of an invalid company, return 'NOTICKER'.",
                            },
                            
                        },
                        "required":["company"]
                    },
                },
                {
                    "name":"get_none",
                    "description":"Get details other than advise or statistics/status on a NSE stock",
                    "parameters":{
                        "type":"object",
                        "properties":{
                            "company":{
                                "type":"string",
                                "description":"""
                                For any queries other than advise or statistics/status on a NSE stock, only return "NOTICKER".
                                """,
                            },
                            
                        },
                        "required":["company"]
                    },
                }
            ] 

        
        initial_response = self.client.chat.completions.create(
            model=self.config.azure_config["model_deployment"],
            messages=[
                {"role": "system", "content": "You are a helpful assistant to understand the context of input query on NSE stock advise and statistics."},
                {"role": "user", "content": user_question}
            ],
        functions=functions
        )

        print (initial_response)
        if str(initial_response.choices[0].message.function_call) == "None":
            function_name = "get_none" 
            company= "NOTICKER"
        else:
            function_name = initial_response.choices[0].message.function_call.name
            function_argument = json.loads(initial_response.choices[0].message.function_call.arguments)
            company= function_argument['company']
        print(function_name)
        print(company)
        return function_name

    
    def get_symbol(self, user_question):
        qna_system_message = """
        You are an assistant to a financial services firm who finds the 'nse company symbol' of the related company in the question provided.

        User questions will begin with the token: ###Question.

        Please find the 'nse company symbol' of the related company in the question provided. In case of an invalid company, return "NOTICKER". If it is 'ZEEENT' return 'ZEEL'.
        
        Response format:
        {nse company symbol}
        
        Do not mention anything about the context in your final answer. Stricktly respond only the company symbol.
        """

        qna_user_message_template = """
        ###Question
        {question}
        """

        prompt = [
            {'role': 'system', 'content': qna_system_message},
            {'role': 'user', 'content': qna_user_message_template.format(question=user_question)}
        ]

        try:
            response = self.client.chat.completions.create(
                model=self.config.azure_config["model_name"],
                messages=prompt,
                temperature=0
            )
            cmp_tkr = response.choices[0].message.content.strip()
        except Exception as e:
            cmp_tkr = f'Sorry, I encountered the following error: \n {e}'
            st.write("Reply: ", cmp_tkr)
            return
        print(cmp_tkr)
        return cmp_tkr


    def process_historical_data(self, cmp_tr, hugg = False):
        
        # Initialize ChromaDB Database
        chroma_db = DBStorage(hugg)
        FAISS_DB_PATH = os.path.join(os.getcwd(), "Stock Sentiment Analysis", "faiss_HD")
        if hugg:
            FAISS_DB_PATH = os.path.join(os.getcwd(), "faiss_HD")
        chroma_db.load_vectors(FAISS_DB_PATH)
        context_for_query = chroma_db.get_context_for_query(cmp_tr, k=5)
        
        sentiment_response = self._get_sentiment_analysis(context_for_query, cmp_tr)
        self._display_sentiment(sentiment_response)
        
        return cmp_tr
    
    def display_charts(self,cmp_tr,sentiment_response="none"):
        
        days = 365
        
        print(f"\nFetching {days} days of stock data for {cmp_tr}...")
        df, analysis = self.get_nse_stock_data(cmp_tr, days)
        
        print("df,analysis")
        print(len(df))
        print(len(analysis))
        
        if len(analysis) != 0:
            # Create metrics cards
            
            col0, col1, col2, col3 = st.columns(4)
            # Simulate some metric data (replace with real data in production)\
            with col0:
                st.markdown(f"""
                    <div class="metric-card">
                        <div class="metric-title">current price & volume</div>
                        <div class="metric-value">₹{analysis['current_price']:,}</div>
                        <div>{int(analysis['current_volume']):,}</div>
                    </div>
                    """, unsafe_allow_html=True)
            with col1:
                self._create_metric_card(f"52-Week High on {analysis['week_52_high_date']}", 
                                        f"₹{analysis['week_52_high']:,.2f}", 
                                        self.format_percentage(analysis['pct_from_52w_high']))
            with col2:
                self._create_metric_card(f"52-Week Low on {analysis['week_52_low_date']}",  
                                        f"₹{analysis['week_52_low']:,.2f}", 
                                        self.format_percentage(analysis['pct_from_52w_low']))
            with col3:
                self._create_metric_card("Average Volume", 
                                        f"{int(analysis['avg_volume']):,}", 
                                        f"{self.format_percentage(analysis['volume_pct_diff'])}")
                    
            # Display price chart
            st.plotly_chart(self.visualizer.create_price_chart(df, cmp_tr))
            
            # Display volume chart
            st.plotly_chart(self.visualizer.create_volume_chart(df, cmp_tr))
            
            if sentiment_response != "none":
                sentiment = self._extract_between(sentiment_response, "Overall Sentiment:", "Overall Justification:").strip()
            
                # Display sentiment gauge (simulate sentiment score)
                # Generating random score for Demo purpose
                if sentiment == "Negative":
                    sentiment_score = np.random.uniform(-1, -0.75)
                elif sentiment == "Neutral":
                    sentiment_score = np.random.uniform(-0.75, 0.25)
                elif sentiment == "Positive":
                    sentiment_score = np.random.uniform(0.25, 1)
                else:
                    sentiment_score = 0
                    
                st.plotly_chart(self.visualizer.create_sentiment_gauge(sentiment_score))
    
    def get_nse_stock_data(self,symbol, days):
        """
        Fetch stock data and perform extended analysis including 52-week highs/lows
        and volume comparisons.
        
        Args:
            symbol (str): NSE stock symbol (e.g., 'RELIANCE.NS')
        
        Returns:
            tuple: (DataFrame of daily data, dict of analysis metrics)
        """
        try:
            # Add .NS suffix if not present
            if not symbol.endswith('.NS'):
                symbol = f"{symbol}.NS"
            
            # Create Ticker object and fetch 1 year of data
            ticker = yf.Ticker(symbol)
            
            # Get last 90 days of data
            end_date = datetime.now()
            start_date = end_date - timedelta(days=days)
            df_90d = ticker.history(start=start_date, end=end_date)
            
            # Get 1 year of data for 52-week analysis
            start_date_52w = end_date - timedelta(days=365)
            df_52w = ticker.history(start=start_date_52w, end=end_date)
            
            # Create main DataFrame with 90-day data
            df = pd.DataFrame({
                'Open': df_90d['Open'],
                'High': df_90d['High'],
                'Low': df_90d['Low'],
                'Close': df_90d['Close'],
                'Volume': df_90d['Volume']
            }, index=df_90d.index)
            
            # Round numerical values
            df[['Open', 'High', 'Low', 'Close']] = df[['Open', 'High', 'Low', 'Close']].round(2)
            df['Volume'] = df['Volume'].astype(int)
            
            # Get current price (latest close)
            current_price = df['Close'].iloc[-1]
            
            # Calculate 52-week metrics
            week_52_high = df_52w['High'].max()
            week_52_low = df_52w['Low'].min()
            
            # Calculate percentage differences
            pct_from_52w_high = ((current_price - week_52_high) / week_52_high) * 100
            pct_from_52w_low = ((current_price - week_52_low) / week_52_low) * 100
            
            # Volume analysis
            current_volume = df['Volume'].iloc[-1]
            avg_volume = df_52w['Volume'].mean()
            volume_pct_diff = ((current_volume - avg_volume) / avg_volume) * 100
                    
            # Find dates of 52-week high and low
            high_date = df_52w[df_52w['High'] == week_52_high].index[0].strftime('%Y-%m-%d')
            low_date = df_52w[df_52w['Low'] == week_52_low].index[0].strftime('%Y-%m-%d')
        
            # Create analysis metrics dictionary
            analysis = {
                'current_price': current_price,
                'week_52_high': week_52_high,
                'week_52_high_date': high_date,
                'week_52_low': week_52_low,
                'week_52_low_date': low_date,
                'pct_from_52w_high': pct_from_52w_high,
                'pct_from_52w_low': pct_from_52w_low,
                'current_volume': current_volume,
                'avg_volume': avg_volume,
                'volume_pct_diff': volume_pct_diff
            }
            
            print(analysis)
            
            return df, analysis
        
        except Exception as e:
            print(f"Error fetching data: {str(e)}")
            return [], []

    def format_percentage(self, value):
        """Format percentage with + or - sign"""
        return f"+{value:.2f}%" if value > 0 else f"{value:.2f}%"


    def process_realtime_data(self, cmp_tr, hugg = False):
        if cmp_tr == "NOTICKER":
            st.write("No valid company in the query.")
            return

        data_fetch = DataFetch()
        query_context = []
        
        # Create a placeholder for the current source
        source_status = st.empty()
        
        # Collect data from various sources
        data_sources = [
            ("Reddit", data_fetch.collect_reddit_data),
            ("YouTube", data_fetch.collect_youtube_data),
            ("Tumblr", data_fetch.collect_tumblr_data),
            ("Google News", data_fetch.collect_google_news),
            ("Financial Times", data_fetch.collect_financial_times),
            ("Bloomberg", data_fetch.collect_bloomberg),
            ("Reuters", data_fetch.collect_reuters)
        ]
        
        st_status = ""

        for source_name, collect_func in data_sources:
            st_status = st_status.replace("Currently fetching", "Fetched") + f"📡 Currently fetching data from: {source_name} \n \n"
            source_status.write(st_status, unsafe_allow_html=True)
            print(f"Collecting {source_name} Data")
            query_context.extend(collect_func(cmp_tr))

        st_status = st_status.replace("Currently fetching", "Fetched") +  "📡 Currently fetching data from: Serper - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc."
        source_status.write(st_status, unsafe_allow_html=True)
        print("Collecting Serper Data")
        query_context.extend(data_fetch.search_news(cmp_tr, 100))

        # Process collected data
        db_store = DBStorage(hugg)
        FAISS_DB_PATH = os.path.join(os.getcwd(), "Stock Sentiment Analysis", "faiss_RD")
        
        if hugg:
            FAISS_DB_PATH = os.path.join(os.getcwd(), "faiss_RD")
            
        db_store.embed_vectors(to_documents(query_context), FAISS_DB_PATH)
        
        db_store.load_vectors(FAISS_DB_PATH)
        context_for_query = db_store.get_context_for_query(cmp_tr, k=5)
        
        sentiment_response = self._get_sentiment_analysis(context_for_query, cmp_tr, is_realtime=True)
        self._display_sentiment(sentiment_response)
        
        # Clear the status message after all sources are processed
        source_status.empty()
        
        return sentiment_response


    def _create_metric_card(self, title, value, change):
        st.markdown(f"""
            <div class="metric-card">
                <div class="metric-title">{title}</div>
                <div class="metric-value">{value}</div>
                <div style="color: {'green' if float(change.strip('%')) > 0 else 'red'}">
                    {change}
                </div>
            </div>
        """, unsafe_allow_html=True)

    def _get_sentiment_analysis(self, context, cmp_tr, is_realtime=False):
        system_message, dcument = self._get_system_prompt(is_realtime)
        user_message = f"""
        ###Context
        Here are some list of {dcument} that are relevant to the question mentioned below.
        {context}

        ###Question
        {cmp_tr}
        """

        try:
            response = self.client.chat.completions.create(
                model=self.config.azure_config["model_name"],
                messages=[
                    {'role': 'system', 'content': system_message},
                    {'role': 'user', 'content': user_message}
                ],
                temperature=0
            )
            return response.choices[0].message.content.strip()
        except Exception as e:
            return f'Sorry, I encountered the following error: \n {e}', ""

    def _display_sentiment(self, prediction):
        sentiment = self._extract_between(prediction, "Overall Sentiment:", "Overall Justification:").strip()
        print("Sentiment: "+ sentiment)
        print(prediction)
        if sentiment == "Positive":
            st.success("Positive : Go Ahead...!")
        elif sentiment == "Negative":
            st.warning("Negative : Don't...!")
        elif sentiment == "Neutral":
            st.info("Neutral : Need to Analyse further")
        st.write(prediction, unsafe_allow_html=True)

    @staticmethod
    def _extract_between(text: str, start: str, end: str) -> str:
        try:
            start_pos = text.find(start)
            if start_pos == -1:
                return ""
            start_pos += len(start)
            end_pos = text.find(end, start_pos)
            if end_pos == -1:
                return ""
            return text[start_pos:end_pos]
        except (AttributeError, TypeError):
            return ""

    @staticmethod
    def _get_system_prompt(is_realtime):
        """
        Returns the appropriate system prompt based on whether it's realtime or historical data analysis.
        
        Args:
            is_realtime (bool): Flag indicating if this is for realtime data analysis
        
        Returns:
            str: The complete system prompt for the sentiment analysis
        """
        
        if is_realtime:
            response_format = """
                Response Formats:
                Only If the Question is 'NOTICKER':
                    No valid company in the query.
                
                Else, If the context does not have relevent data for the company:
                    Respond "Company {Company name} {nse company symbol}({symbol}) details not found in the RealTime Data".
                """
            citation_format = """
                Citations: [Generate few citations based on the links provided. Mention Source ('platform') and Title('title')](hyperlink them with url from corresponding 'link')
                """
            instr2 = """
            Stricktly Never mention 'document'/'documents', not even once. Instead mention it as 'Real-Time Social media and News data'
            """
            
            dcument = "Real-Time Social media and News data"
            dcuments = "List of 'Real-Time Social media and News data'"
        else:
            response_format = """
                Response Formats:
                If the Question value is "NOTICKER":
                    No valid company in the query.
                
                If the context does not have relevent data for the company (Question value):
                    Respond "Company {Company name} {nse company symbol}({symbol}) details not found in the Historical Data".
                """
            citation_format = ""
                        
            instr2 = """
            Never mention 'document'/'documents', not even once. Instead mention it as 'Historical Social media and News data'
            """
            
            dcument = "Historical Social media and News data"
            dcuments = "List of 'Historical Social media and News data'"

        instr = f"""
        Please follow the steps to analyze the sentiment of each {dcument}'s content; and strictly follow exact structure illustrated in above example response to provide an overall sentiment, justification and give stock purchase advice. Provide only Overall response, don't provide documentwise response or any note. Decorate the response with html/css tags.
        """
        common_format = f"""
        else, If the content parts of context has relevent data:
        Overall Sentiment: [Positive/Negative/Neutral]  <line break>
        Overall Justification: [Detailed analysis of why the sentiment was chosen, summarizing key points from the {dcuments}]  <line break>
        Stock Advice: [Clear recommendation on whether to purchase the stock, based on the sentiment analysis and justification]
        """
        
        base_prompt = f"""
        You are an assistant to a financial services firm who answers user queries on Stock Investments.
        User input will have the context required by you to answer user questions.
        This context will begin with the token: ###Context.
        The context contains references to specific portions of a {dcument} relevant to the user query.
        Each document is a {dcument}.

        User questions will begin with the token: ###Question.
        
        First, find the 'nse company symbol' of the related company in the question provided.
        Your task is to perform sentiment analysis on the content part of each {dcuments} provided in the Context, which discuss a company identified by its 'nse company symbol'. The goal is to determine the overall sentiment expressed across all {dcuments} and provide an overall justification. Based on the sentiment analysis, give a recommendation on whether the company's stock should be purchased.

        Step-by-Step Instructions:
            1. See if the question is "NOTICKER". If so, give response and don't proceed.
            2. If the company in question is not found in the context, give the corresponding response and don't proceed.
            3. Read the Context: Carefully read the content parts of each {dcument} provided in the list of {dcuments}.
            4. Determine Overall Sentiment: Analyze the sentiment across all {dcuments} and categorize the overall sentiment as Positive, Negative, or Neutral.
            5. Provide Overall Justification: Summarize the key points from all {dcuments} to justify the overall sentiment.
            6. Stock Advice: Based on the overall sentiment and justification, provide a recommendation on whether the company's stock should be purchased.
        """
        example_analysis = """
        Example Analysis:
            Context: 
                [Document(metadata={'platform': 'Moneycontrol', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 134}, page_content="{'title': 'Asian Paints launches Neo Bharat Latex Paint to tap on booming demand', 'content': 'The company, which is the leading player in India, touts the new segment to being affordable, offering over 1000 shades for consumers.'}"), Document(metadata={'platform': 'MarketsMojo', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 128}, page_content="{'title': 'Asian Paints Ltd. Stock Performance Shows Positive Trend, Outperforms Sector by 0.9%', 'content': 'Asian Paints Ltd., a leading player in the paints industry, has seen a positive trend in its stock performance on July 10, 2024.'}"), Document(metadata={'platform': 'Business Standard', 'company': 'ASIANPAINT', 'ingestion_timestamp': '2024-10-25T17:13:42.970099', 'word_count': 138}, page_content="{'title': 'Asian Paints, Indigo Paints, Kansai gain up to 5% on falling oil prices', 'content': 'Shares of paint companies were trading higher on Wednesday, rising up to 5 per cent on the BSE, on the back of a fall in crude oil prices.'}")]
        """


        return base_prompt + example_analysis + response_format + common_format + citation_format + instr + instr2, dcument

def get_advise(user_question,adviser,cmp_tr,sentiment_response,hugg):
    col1, col2 = st.columns(2)
    with col1:
        if user_question:
            st.markdown("<h3 class='little-header'>Historical Analysis</h3>", unsafe_allow_html=True)
            with st.container():
                adviser.process_historical_data(cmp_tr, hugg)

    with col2:
        if user_question:
            st.markdown("<h3 class='little-header'>Real-Time Analysis</h3>", unsafe_allow_html=True)
            with st.container():
                sentiment_response = adviser.process_realtime_data(cmp_tr, hugg)
                
    return sentiment_response
 
def get_stats(user_question,adviser,cmp_tr,sentiment_response,hugg):
    if (str(cmp_tr) != "NOTICKER"):            
        with st.container():
            if user_question:
                adviser.display_charts(cmp_tr,sentiment_response)

def get_adv_stats(user_question,adviser,cmp_tr,sentiment_response,hugg):
    sentiment_response = get_advise(user_question,adviser,cmp_tr,sentiment_response,hugg)     
    get_stats(user_question,adviser,cmp_tr,sentiment_response,hugg)

def get_none(user_question,adviser,cmp_tr,sentiment_response,hugg):
    st.write("Please enter a valid NSE stock enquiry.")

def main(hugg):
    adviser = StockAdviser()
    

    # Create sidebar for filters and settings
    st.logo(
    "https://cdn.shopify.com/s/files/1/0153/8513/3156/files/info_omac.png?v=1595717396",
    size="large"
    )

    with st.sidebar:
        # About the Application (Main Area)
        st.markdown("""
            <div style="background-color: #2d2d2d; padding: 20px; border-radius: 10px; box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1);">
                <h2 style="color: #e6e6e6; text-align: center;">About the Application</h2>
                <p style="font-size: 16px; color: #d9d9d9; line-height: 1.6; text-align: justify;">
                    This application provides <span style="color: #80b1c1;"><strong>investment managers</strong></span> with daily insights into 
                    <span style="color: #d3b673;"><strong>social media</strong></span> and <span style="color: #d3b673;"><strong>news sentiment</strong></span> surrounding 
                    specific <span style="color: #80b1c1;"><strong>stocks and companies</strong></span>. By analyzing posts and articles across major platforms 
                    such as <strong style="color: #b0b0b0;">Reddit</strong>, <strong style="color: #b0b0b0;">YouTube</strong>, <strong style="color: #b0b0b0;">Tumblr</strong>, 
                    <strong style="color: #b0b0b0;">Google News</strong>, <strong style="color: #b0b0b0;">Financial Times</strong>, <strong style="color: #b0b0b0;">Bloomberg</strong>, 
                    <strong style="color: #b0b0b0;">Reuters</strong>, and <strong style="color: #b0b0b0;">Wall Street Journal</strong> (WSJ), it detects shifts in public 
                    and media opinion that may impact stock performance.
                </p>
                <p style="font-size: 16px; color: #d9d9d9; line-height: 1.6; text-align: justify;">
                    Additionally, sources like <span style="color: #80b1c1;"><strong>Serper</strong></span> provide data from 
                    <span style="color: #d3b673;"><strong>StockNews</strong></span>, <span style="color: #d3b673;"><strong>Yahoo Finance</strong></span>, 
                    <span style="color: #d3b673;"><strong>Insider Monkey</strong></span>, <span style="color: #d3b673;"><strong>Investor's Business Daily</strong></span>, 
                    and others. Using advanced <span style="color: #80b1c1;"><strong>AI techniques</strong></span>, the application generates a 
                    <span style="color: #d3b673;"><strong>sentiment report</strong></span> that serves as a leading indicator, helping managers make informed, 
                    timely adjustments to their positions. With daily updates and <span style="color: #d3b673;"><strong>historical trend analysis</strong></span>, 
                    it empowers users to stay ahead in a fast-paced, sentiment-driven market.
                </p>
                <p style="font-size: 16px; color: #d9d9d9; line-height: 1.6; text-align: justify;">
                    The application also utilizes <span style="color: #80b1c1;"><strong>intelligent agent functions</strong></span> to determine the type of query input 
                    by the user. It assesses whether the query seeks <span style="color: #d3b673;"><strong>stock statistics</strong></span>, 
                    <span style="color: #d3b673;"><strong>sentiment-analyzed advice</strong></span>, both, or is unrelated, providing the most relevant response accordingly.
                </p>
            </div>
        """, unsafe_allow_html=True)

        # Sidebar Footer (Floating Footer)
        st.sidebar.markdown("""
            <div style="position: fixed; bottom: 25px; background-color: #1f1f1f; padding: 1px; border-radius: 15px; text-align: center;">
                <p style="color: #cccccc; font-size: 14px; text-align: center; margin: 0;">
                    Developed by: <a href="https://www.linkedin.com/in/karthikeyen92/" target="_blank" style="color: #4DA8DA; text-decoration: none;">Karthikeyen Packirisamy</a>
                </p>
            </div>
        """, unsafe_allow_html=True)

                    

    # Main content
    cmp_tr = "NOTICKER"
        
    # Define example queries
    example_queries = [
        "0. ",
        "1. Is it a good time to buy bharati airtel ?",
        "2. Advise about vodafone idea ltd ?",
        "3. is TCS stock good to invest? advise and tell how it is now.",
        "4. Advise on HDFC bank and provide statistics.",
        "5. How about Asian Paints ?",
        "6. Advise about the company that manufactures swift car and provide stats?",
        "7. Any thoughts on N.R. Narayana Murthy's company?",
        "8. Opinion and current values of the company that broadcasts 'Sa Re Ga Ma Pa 2024' ?"
    ]

    selected_query = ""
    
    # Layout with two columns
    cola1, cola2 = st.columns([3, 1])

    # inp
    with cola1:
        st.header("Ask a question")

    # Dropdown in the right column
    with cola2:
        selected_query = st.selectbox("Example Queries", example_queries, index=0)

    # Automatically update text input when a new example is selected
    if selected_query:
        query_text = selected_query.split(". ", 1)[1] if selected_query != example_queries[0] else ""
        user_question = st.text_input("Please ask statistical or advice or both related questions on a NSE stock.",value=query_text if selected_query else "", key="user_question")
    
    if user_question.strip():
        cmp_tr = adviser.get_symbol(user_question)
        sentiment_response = "none"
        
        agent_function = adviser.stock_agent(user_question)
        getattr(sys.modules[__name__], agent_function)(user_question,adviser,cmp_tr,sentiment_response,hugg)
        
    # get_adv_stats(user_question,adviser,cmp_tr,sentiment_response,hugg)
    st.markdown("---")
    st.markdown("<p style='text-align: center; color: #666;'>© 2024 Karthikeyen</p>", unsafe_allow_html=True)

if __name__ == "__main__":
    hugg = os.getenv("IS_HUGG") == "True"
    print(hugg)
    main(hugg)