Karthikeyen92
commited on
Commit
•
fd33638
1
Parent(s):
42df7a2
Update py/data_fetch.py
Browse files- py/data_fetch.py +237 -236
py/data_fetch.py
CHANGED
@@ -1,236 +1,237 @@
|
|
1 |
-
import os
|
2 |
-
from datetime import datetime, timedelta
|
3 |
-
from typing import Dict, List
|
4 |
-
import pandas as pd
|
5 |
-
import tweepy
|
6 |
-
import praw
|
7 |
-
import googleapiclient.discovery
|
8 |
-
import pytumblr
|
9 |
-
from gnews import GNews
|
10 |
-
import requests
|
11 |
-
from bs4 import BeautifulSoup
|
12 |
-
import time
|
13 |
-
import math
|
14 |
-
|
15 |
-
|
16 |
-
class DataFetch:
|
17 |
-
def __init__(self):
|
18 |
-
# Load company list and set date range
|
19 |
-
self.end_date = datetime.now()
|
20 |
-
self.start_date = self.end_date - timedelta(days=1)
|
21 |
-
|
22 |
-
# Initialize API clients
|
23 |
-
self.tumblr_client = pytumblr.TumblrRestClient(
|
24 |
-
os.getenv("TUMBLR_CONSUMER_KEY"),
|
25 |
-
os.getenv("TUMBLR_CONSUMER_SECRET"),
|
26 |
-
os.getenv("TUMBLR_OAUTH_TOKEN"),
|
27 |
-
os.getenv("TUMBLR_OAUTH_SECRET")
|
28 |
-
)
|
29 |
-
|
30 |
-
twitter_auth = tweepy.OAuthHandler(os.getenv("TWITTER_API_KEY"), os.getenv("TWITTER_API_SECRET"))
|
31 |
-
twitter_auth.set_access_token(os.getenv("TWITTER_ACCESS_TOKEN"), os.getenv("TWITTER_ACCESS_TOKEN_SECRET"))
|
32 |
-
self.twitter_api = tweepy.API(twitter_auth)
|
33 |
-
|
34 |
-
self.reddit = praw.Reddit(
|
35 |
-
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
36 |
-
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
37 |
-
user_agent="Sentiment Analysis Bot 1.0"
|
38 |
-
)
|
39 |
-
|
40 |
-
self.youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=os.getenv("YOUTUBE_API_KEY"))
|
41 |
-
|
42 |
-
def load_company_list(self, file_path: str) -> List[str]:
|
43 |
-
self.company_list = pd.read_csv(file_path)['company_ticker'].tolist()
|
44 |
-
|
45 |
-
def collect_data(self) -> List[Dict]:
|
46 |
-
all_data = []
|
47 |
-
|
48 |
-
for company in self.company_list:
|
49 |
-
print(f"{company}:")
|
50 |
-
all_data.extend(self._collect_social_media_data(company))
|
51 |
-
all_data.extend(self._collect_news_data(company))
|
52 |
-
|
53 |
-
return all_data
|
54 |
-
|
55 |
-
def _collect_social_media_data(self, query: str) -> List[Dict]:
|
56 |
-
social_data = []
|
57 |
-
|
58 |
-
print("Collecting Reddit Data")
|
59 |
-
social_data.extend(self.collect_reddit_data(query))
|
60 |
-
|
61 |
-
print("Collecting YouTube Data")
|
62 |
-
social_data.extend(self.collect_youtube_data(query))
|
63 |
-
|
64 |
-
print("Collecting Tumblr Data")
|
65 |
-
social_data.extend(self.collect_tumblr_data(query))
|
66 |
-
|
67 |
-
return social_data
|
68 |
-
|
69 |
-
def _collect_news_data(self, query: str) -> List[Dict]:
|
70 |
-
news_data = []
|
71 |
-
|
72 |
-
print("Collecting Google News Data")
|
73 |
-
news_data.extend(self.collect_google_news(query))
|
74 |
-
|
75 |
-
print("Collecting Financial Times Data")
|
76 |
-
news_data.extend(self.collect_financial_times(query))
|
77 |
-
|
78 |
-
print("Collecting Bloomberg Data")
|
79 |
-
news_data.extend(self.collect_bloomberg(query))
|
80 |
-
|
81 |
-
print("Collecting Reuters Data")
|
82 |
-
news_data.extend(self.collect_reuters(query))
|
83 |
-
|
84 |
-
print("Collecting WSJ Data")
|
85 |
-
# news_data.extend(self.collect_wsj(query))
|
86 |
-
|
87 |
-
print("Collecting Serper Data - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc.")
|
88 |
-
news_data.extend(self.search_news(query))
|
89 |
-
|
90 |
-
return news_data
|
91 |
-
|
92 |
-
def collect_tumblr_data(self, query: str) -> List[Dict]:
|
93 |
-
posts = self.tumblr_client.tagged(query)
|
94 |
-
return [{"platform": "Tumblr", "company": query, "page_content": {
|
95 |
-
"title": post["blog"]["title"], "content": post["blog"]["description"]}} for post in posts]
|
96 |
-
|
97 |
-
def collect_twitter_data(self, query: str) -> List[Dict]:
|
98 |
-
tweets = []
|
99 |
-
for tweet in tweepy.Cursor(self.twitter_api.search_tweets, q=query, lang="en",
|
100 |
-
since=self.start_date, until=self.end_date).items(100):
|
101 |
-
tweets.append(tweet._json)
|
102 |
-
return [{"platform": "Twitter", "company": query, "page_content": tweet} for tweet in tweets]
|
103 |
-
|
104 |
-
def collect_reddit_data(self, query: str) -> List[Dict]:
|
105 |
-
posts = []
|
106 |
-
subreddit = self.reddit.subreddit("all")
|
107 |
-
for post in subreddit.search(query, sort="new", time_filter="day"):
|
108 |
-
post_date = datetime.fromtimestamp(post.created_utc)
|
109 |
-
if self.start_date <= post_date <= self.end_date:
|
110 |
-
posts.append({"platform": "Reddit", "company": query, "page_content": {
|
111 |
-
"title": post.title, "content": post.selftext}})
|
112 |
-
return posts
|
113 |
-
|
114 |
-
def collect_youtube_data(self, query: str) -> List[Dict]:
|
115 |
-
request = self.youtube.search().list(
|
116 |
-
q=query, type="video", part="id,snippet", maxResults=50,
|
117 |
-
publishedAfter=self.start_date.isoformat() + "Z", publishedBefore=self.end_date.isoformat() + "Z"
|
118 |
-
)
|
119 |
-
response = request.execute()
|
120 |
-
return [{"platform": "YouTube", "company": query, "page_content": {
|
121 |
-
"title": item["snippet"]["title"], "content": item["snippet"]["description"]}} for item in response['items']]
|
122 |
-
|
123 |
-
def collect_google_news(self, query: str) -> List[Dict]:
|
124 |
-
google_news = GNews(language='en', country='US', start_date=self.start_date, end_date=self.end_date)
|
125 |
-
articles = google_news.get_news(query)
|
126 |
-
return [{"platform": "Google News", "company": query, "page_content": {
|
127 |
-
"title": article["title"], "content": article["description"]}} for article in articles]
|
128 |
-
|
129 |
-
def collect_financial_times(self, query: str) -> List[Dict]:
|
130 |
-
url = f"https://www.ft.com/search?q={query}&dateTo={self.end_date.strftime('%Y-%m-%d')}&dateFrom={self.start_date.strftime('%Y-%m-%d')}"
|
131 |
-
response = requests.get(url)
|
132 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
133 |
-
articles = soup.find_all('div', class_='o-teaser__content')
|
134 |
-
return [{"platform": "Financial Times", "company": query, "page_content": {
|
135 |
-
"title": a.find('div', class_='o-teaser__heading').text.strip(),
|
136 |
-
"content": a.find('p', class_='o-teaser__standfirst').text.strip() if a.find('p', class_='o-teaser__standfirst') else ''
|
137 |
-
}} for a in articles]
|
138 |
-
|
139 |
-
def collect_bloomberg(self, query: str) -> List[Dict]:
|
140 |
-
url = f"https://www.bloomberg.com/search?query={query}"
|
141 |
-
response = requests.get(url)
|
142 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
143 |
-
articles = soup.find_all('div', class_='storyItem__aaf871c1')
|
144 |
-
return [{"platform": "Bloomberg", "company": query, "page_content": {
|
145 |
-
"title": a.find('a', class_='headline__3a97424d').text.strip(),
|
146 |
-
"content": a.find('p', class_='summary__483358e1').text.strip() if a.find('p', class_='summary__483358e1') else ''
|
147 |
-
}} for a in articles]
|
148 |
-
|
149 |
-
def collect_reuters(self, query: str) -> List[Dict]:
|
150 |
-
articles = []
|
151 |
-
base_url = "https://www.reuters.com/site-search/"
|
152 |
-
page = 1
|
153 |
-
while True:
|
154 |
-
url = f"{base_url}?blob={query}&page={page}"
|
155 |
-
response = requests.get(url)
|
156 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
157 |
-
results = soup.find_all('li', class_='search-result__item')
|
158 |
-
if not results:
|
159 |
-
break
|
160 |
-
for result in results:
|
161 |
-
date_elem = result.find('time', class_='search-result__timestamp')
|
162 |
-
if date_elem:
|
163 |
-
date = datetime.strptime(date_elem['datetime'], "%Y-%m-%dT%H:%M:%SZ")
|
164 |
-
if self.start_date <= date <= self.end_date:
|
165 |
-
articles.append({"platform": "Reuters", "company": query, "page_content": {
|
166 |
-
"title": result.find('h3', class_='search-result__headline').text.strip(),
|
167 |
-
"content": result.find('p', class_='search-result__excerpt').text.strip()
|
168 |
-
}})
|
169 |
-
elif date < self.start_date:
|
170 |
-
return articles
|
171 |
-
page += 1
|
172 |
-
time.sleep(1)
|
173 |
-
return articles
|
174 |
-
|
175 |
-
def collect_wsj(self, query: str) -> List[Dict]:
|
176 |
-
articles = []
|
177 |
-
base_url = "https://www.wsj.com/search"
|
178 |
-
page = 1
|
179 |
-
while True:
|
180 |
-
params = {
|
181 |
-
'query': query, 'isToggleOn': 'true', 'operator': 'AND', 'sort': 'date-desc',
|
182 |
-
'duration': 'custom', 'startDate': self.start_date.strftime('%Y/%m/%d'),
|
183 |
-
'endDate': self.end_date.strftime('%Y/%m/%d'), 'page': page
|
184 |
-
}
|
185 |
-
response = requests.get(base_url, params=params)
|
186 |
-
soup = BeautifulSoup(response.content, 'html.parser')
|
187 |
-
results = soup.find_all('article', class_='WSJTheme--story--XB4V2mLz')
|
188 |
-
if not results:
|
189 |
-
break
|
190 |
-
for result in results:
|
191 |
-
date_elem = result.find('p', class_='WSJTheme--timestamp--22sfkNDv')
|
192 |
-
if date_elem:
|
193 |
-
date = datetime.strptime(date_elem.text.strip(), "%B %d, %Y")
|
194 |
-
if self.start_date <= date <= self.end_date:
|
195 |
-
articles.append({"platform": "Wall Street Journal", "company": query, "page_content": {
|
196 |
-
"title": result.find('h3', class_='WSJTheme--headline--unZqjb45').text.strip(),
|
197 |
-
"content": result.find('p', class_='WSJTheme--summary--lmOXEsbN').text.strip()
|
198 |
-
}})
|
199 |
-
elif date < self.start_date:
|
200 |
-
return articles
|
201 |
-
page += 1
|
202 |
-
time.sleep(1)
|
203 |
-
return articles
|
204 |
-
|
205 |
-
def search_news(self, query: str,cnt=300) -> List[Dict]:
|
206 |
-
articles = []
|
207 |
-
num_results = cnt
|
208 |
-
|
209 |
-
headers = {
|
210 |
-
"X-API-KEY": os.getenv("SERP_API_KEY"),
|
211 |
-
"Content-Type": "application/json"
|
212 |
-
}
|
213 |
-
payload = {"q": f"{query} company news",
|
214 |
-
"num": num_results,
|
215 |
-
"dateRestrict": 14
|
216 |
-
}
|
217 |
-
response = requests.post(
|
218 |
-
"https://google.serper.dev/news",
|
219 |
-
headers=headers,
|
220 |
-
json=payload
|
221 |
-
)
|
222 |
-
# print(response)
|
223 |
-
if response.status_code == 200:
|
224 |
-
results = response.json().get("news", [])
|
225 |
-
for result in results:
|
226 |
-
articles.append({"platform": result["source"], "company": query, "page_content": {
|
227 |
-
"title": result["title"],
|
228 |
-
"content": result["snippet"]
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime, timedelta
|
3 |
+
from typing import Dict, List
|
4 |
+
import pandas as pd
|
5 |
+
import tweepy
|
6 |
+
import praw
|
7 |
+
import googleapiclient.discovery
|
8 |
+
import pytumblr
|
9 |
+
from gnews import GNews
|
10 |
+
import requests
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
import time
|
13 |
+
import math
|
14 |
+
|
15 |
+
|
16 |
+
class DataFetch:
|
17 |
+
def __init__(self):
|
18 |
+
# Load company list and set date range
|
19 |
+
self.end_date = datetime.now()
|
20 |
+
self.start_date = self.end_date - timedelta(days=1)
|
21 |
+
|
22 |
+
# Initialize API clients
|
23 |
+
self.tumblr_client = pytumblr.TumblrRestClient(
|
24 |
+
os.getenv("TUMBLR_CONSUMER_KEY"),
|
25 |
+
os.getenv("TUMBLR_CONSUMER_SECRET"),
|
26 |
+
os.getenv("TUMBLR_OAUTH_TOKEN"),
|
27 |
+
os.getenv("TUMBLR_OAUTH_SECRET")
|
28 |
+
)
|
29 |
+
|
30 |
+
twitter_auth = tweepy.OAuthHandler(os.getenv("TWITTER_API_KEY"), os.getenv("TWITTER_API_SECRET"))
|
31 |
+
twitter_auth.set_access_token(os.getenv("TWITTER_ACCESS_TOKEN"), os.getenv("TWITTER_ACCESS_TOKEN_SECRET"))
|
32 |
+
self.twitter_api = tweepy.API(twitter_auth)
|
33 |
+
|
34 |
+
self.reddit = praw.Reddit(
|
35 |
+
client_id=os.getenv("REDDIT_CLIENT_ID"),
|
36 |
+
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
|
37 |
+
user_agent="Sentiment Analysis Bot 1.0"
|
38 |
+
)
|
39 |
+
|
40 |
+
self.youtube = googleapiclient.discovery.build("youtube", "v3", developerKey=os.getenv("YOUTUBE_API_KEY"))
|
41 |
+
|
42 |
+
def load_company_list(self, file_path: str) -> List[str]:
|
43 |
+
self.company_list = pd.read_csv(file_path)['company_ticker'].tolist()
|
44 |
+
|
45 |
+
def collect_data(self) -> List[Dict]:
|
46 |
+
all_data = []
|
47 |
+
|
48 |
+
for company in self.company_list:
|
49 |
+
print(f"{company}:")
|
50 |
+
all_data.extend(self._collect_social_media_data(company))
|
51 |
+
all_data.extend(self._collect_news_data(company))
|
52 |
+
|
53 |
+
return all_data
|
54 |
+
|
55 |
+
def _collect_social_media_data(self, query: str) -> List[Dict]:
|
56 |
+
social_data = []
|
57 |
+
|
58 |
+
print("Collecting Reddit Data")
|
59 |
+
social_data.extend(self.collect_reddit_data(query))
|
60 |
+
|
61 |
+
print("Collecting YouTube Data")
|
62 |
+
social_data.extend(self.collect_youtube_data(query))
|
63 |
+
|
64 |
+
print("Collecting Tumblr Data")
|
65 |
+
social_data.extend(self.collect_tumblr_data(query))
|
66 |
+
|
67 |
+
return social_data
|
68 |
+
|
69 |
+
def _collect_news_data(self, query: str) -> List[Dict]:
|
70 |
+
news_data = []
|
71 |
+
|
72 |
+
print("Collecting Google News Data")
|
73 |
+
news_data.extend(self.collect_google_news(query))
|
74 |
+
|
75 |
+
print("Collecting Financial Times Data")
|
76 |
+
news_data.extend(self.collect_financial_times(query))
|
77 |
+
|
78 |
+
print("Collecting Bloomberg Data")
|
79 |
+
news_data.extend(self.collect_bloomberg(query))
|
80 |
+
|
81 |
+
print("Collecting Reuters Data")
|
82 |
+
news_data.extend(self.collect_reuters(query))
|
83 |
+
|
84 |
+
print("Collecting WSJ Data")
|
85 |
+
# news_data.extend(self.collect_wsj(query))
|
86 |
+
|
87 |
+
print("Collecting Serper Data - StockNews, Yahoo Finance, Insider Monkey, Investor's Business Daily, etc.")
|
88 |
+
news_data.extend(self.search_news(query))
|
89 |
+
|
90 |
+
return news_data
|
91 |
+
|
92 |
+
def collect_tumblr_data(self, query: str) -> List[Dict]:
|
93 |
+
posts = self.tumblr_client.tagged(query)
|
94 |
+
return [{"platform": "Tumblr", "company": query, "page_content": {
|
95 |
+
"title": post["blog"]["title"], "content": post["blog"]["description"]}} for post in posts]
|
96 |
+
|
97 |
+
def collect_twitter_data(self, query: str) -> List[Dict]:
|
98 |
+
tweets = []
|
99 |
+
for tweet in tweepy.Cursor(self.twitter_api.search_tweets, q=query, lang="en",
|
100 |
+
since=self.start_date, until=self.end_date).items(100):
|
101 |
+
tweets.append(tweet._json)
|
102 |
+
return [{"platform": "Twitter", "company": query, "page_content": tweet} for tweet in tweets]
|
103 |
+
|
104 |
+
def collect_reddit_data(self, query: str) -> List[Dict]:
|
105 |
+
posts = []
|
106 |
+
subreddit = self.reddit.subreddit("all")
|
107 |
+
for post in subreddit.search(query, sort="new", time_filter="day"):
|
108 |
+
post_date = datetime.fromtimestamp(post.created_utc)
|
109 |
+
if self.start_date <= post_date <= self.end_date:
|
110 |
+
posts.append({"platform": "Reddit", "company": query, "page_content": {
|
111 |
+
"title": post.title, "content": post.selftext}})
|
112 |
+
return posts
|
113 |
+
|
114 |
+
def collect_youtube_data(self, query: str) -> List[Dict]:
|
115 |
+
request = self.youtube.search().list(
|
116 |
+
q=query, type="video", part="id,snippet", maxResults=50,
|
117 |
+
publishedAfter=self.start_date.isoformat() + "Z", publishedBefore=self.end_date.isoformat() + "Z"
|
118 |
+
)
|
119 |
+
response = request.execute()
|
120 |
+
return [{"platform": "YouTube", "company": query, "page_content": {
|
121 |
+
"title": item["snippet"]["title"], "content": item["snippet"]["description"]}} for item in response['items']]
|
122 |
+
|
123 |
+
def collect_google_news(self, query: str) -> List[Dict]:
|
124 |
+
google_news = GNews(language='en', country='US', start_date=self.start_date, end_date=self.end_date)
|
125 |
+
articles = google_news.get_news(query)
|
126 |
+
return [{"platform": "Google News", "company": query, "page_content": {
|
127 |
+
"title": article["title"], "content": article["description"]}} for article in articles]
|
128 |
+
|
129 |
+
def collect_financial_times(self, query: str) -> List[Dict]:
|
130 |
+
url = f"https://www.ft.com/search?q={query}&dateTo={self.end_date.strftime('%Y-%m-%d')}&dateFrom={self.start_date.strftime('%Y-%m-%d')}"
|
131 |
+
response = requests.get(url)
|
132 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
133 |
+
articles = soup.find_all('div', class_='o-teaser__content')
|
134 |
+
return [{"platform": "Financial Times", "company": query, "page_content": {
|
135 |
+
"title": a.find('div', class_='o-teaser__heading').text.strip(),
|
136 |
+
"content": a.find('p', class_='o-teaser__standfirst').text.strip() if a.find('p', class_='o-teaser__standfirst') else ''
|
137 |
+
}} for a in articles]
|
138 |
+
|
139 |
+
def collect_bloomberg(self, query: str) -> List[Dict]:
|
140 |
+
url = f"https://www.bloomberg.com/search?query={query}"
|
141 |
+
response = requests.get(url)
|
142 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
143 |
+
articles = soup.find_all('div', class_='storyItem__aaf871c1')
|
144 |
+
return [{"platform": "Bloomberg", "company": query, "page_content": {
|
145 |
+
"title": a.find('a', class_='headline__3a97424d').text.strip(),
|
146 |
+
"content": a.find('p', class_='summary__483358e1').text.strip() if a.find('p', class_='summary__483358e1') else ''
|
147 |
+
}} for a in articles]
|
148 |
+
|
149 |
+
def collect_reuters(self, query: str) -> List[Dict]:
|
150 |
+
articles = []
|
151 |
+
base_url = "https://www.reuters.com/site-search/"
|
152 |
+
page = 1
|
153 |
+
while True:
|
154 |
+
url = f"{base_url}?blob={query}&page={page}"
|
155 |
+
response = requests.get(url)
|
156 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
157 |
+
results = soup.find_all('li', class_='search-result__item')
|
158 |
+
if not results:
|
159 |
+
break
|
160 |
+
for result in results:
|
161 |
+
date_elem = result.find('time', class_='search-result__timestamp')
|
162 |
+
if date_elem:
|
163 |
+
date = datetime.strptime(date_elem['datetime'], "%Y-%m-%dT%H:%M:%SZ")
|
164 |
+
if self.start_date <= date <= self.end_date:
|
165 |
+
articles.append({"platform": "Reuters", "company": query, "page_content": {
|
166 |
+
"title": result.find('h3', class_='search-result__headline').text.strip(),
|
167 |
+
"content": result.find('p', class_='search-result__excerpt').text.strip()
|
168 |
+
}})
|
169 |
+
elif date < self.start_date:
|
170 |
+
return articles
|
171 |
+
page += 1
|
172 |
+
time.sleep(1)
|
173 |
+
return articles
|
174 |
+
|
175 |
+
def collect_wsj(self, query: str) -> List[Dict]:
|
176 |
+
articles = []
|
177 |
+
base_url = "https://www.wsj.com/search"
|
178 |
+
page = 1
|
179 |
+
while True:
|
180 |
+
params = {
|
181 |
+
'query': query, 'isToggleOn': 'true', 'operator': 'AND', 'sort': 'date-desc',
|
182 |
+
'duration': 'custom', 'startDate': self.start_date.strftime('%Y/%m/%d'),
|
183 |
+
'endDate': self.end_date.strftime('%Y/%m/%d'), 'page': page
|
184 |
+
}
|
185 |
+
response = requests.get(base_url, params=params)
|
186 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
187 |
+
results = soup.find_all('article', class_='WSJTheme--story--XB4V2mLz')
|
188 |
+
if not results:
|
189 |
+
break
|
190 |
+
for result in results:
|
191 |
+
date_elem = result.find('p', class_='WSJTheme--timestamp--22sfkNDv')
|
192 |
+
if date_elem:
|
193 |
+
date = datetime.strptime(date_elem.text.strip(), "%B %d, %Y")
|
194 |
+
if self.start_date <= date <= self.end_date:
|
195 |
+
articles.append({"platform": "Wall Street Journal", "company": query, "page_content": {
|
196 |
+
"title": result.find('h3', class_='WSJTheme--headline--unZqjb45').text.strip(),
|
197 |
+
"content": result.find('p', class_='WSJTheme--summary--lmOXEsbN').text.strip()
|
198 |
+
}})
|
199 |
+
elif date < self.start_date:
|
200 |
+
return articles
|
201 |
+
page += 1
|
202 |
+
time.sleep(1)
|
203 |
+
return articles
|
204 |
+
|
205 |
+
def search_news(self, query: str,cnt=300) -> List[Dict]:
|
206 |
+
articles = []
|
207 |
+
num_results = cnt
|
208 |
+
|
209 |
+
headers = {
|
210 |
+
"X-API-KEY": os.getenv("SERP_API_KEY"),
|
211 |
+
"Content-Type": "application/json"
|
212 |
+
}
|
213 |
+
payload = {"q": f"{query} company news",
|
214 |
+
"num": num_results,
|
215 |
+
"dateRestrict": 14
|
216 |
+
}
|
217 |
+
response = requests.post(
|
218 |
+
"https://google.serper.dev/news",
|
219 |
+
headers=headers,
|
220 |
+
json=payload
|
221 |
+
)
|
222 |
+
# print(response)
|
223 |
+
if response.status_code == 200:
|
224 |
+
results = response.json().get("news", [])
|
225 |
+
for result in results:
|
226 |
+
articles.append({"platform": result["source"], "company": query, "page_content": {
|
227 |
+
"title": result["title"],
|
228 |
+
"content": result["snippet"],
|
229 |
+
"link": result["link"]
|
230 |
+
}})
|
231 |
+
return articles
|
232 |
+
|
233 |
+
# Usage Example
|
234 |
+
if __name__ == "__main__":
|
235 |
+
analyzer = DataFetch("company_list.csv")
|
236 |
+
data = analyzer.collect_data()
|
237 |
+
# Here, data would contain all collected sentiment data for the given companies
|