from datetime import datetime import json import os import pickle from typing import List from langchain.schema import Document import pandas as pd def create_files(social_media_data): folder_path = 'Stock Sentiment Analysis/files' if not os.path.exists(folder_path): os.makedirs(folder_path) # Save dictionary to a file with open(folder_path+'/social_media_data.json', 'w') as f: json.dump(social_media_data, f) # Convert the data to a pandas DataFrame df = pd.DataFrame(social_media_data) df.head() # Exporting the data to a CSV file file_path = folder_path+"/social_media_data.csv" df.to_csv(file_path, index=False) df.to_pickle(folder_path+"/social_media_data.pkl") def fetch_social_media_data(): with open('Stock Sentiment Analysis/files/social_media_data.json', 'r') as file: data = json.load(file) social_media_document = [] for item in data: social_media_document.append(Document( page_content=str(item["page_content"]), metadata={"platform":item["platform"], "company":item["company"], "ingestion_timestamp":datetime.now().isoformat(), "word_count":len(item["page_content"]["content"]) })) return social_media_document def save_ingested_data(ingested_data): # Save the list to a file with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'wb') as file: pickle.dump(ingested_data, file) def save_analysed_data(analysed_data): # Save the list to a file with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'wb') as file: pickle.dump(analysed_data, file) def get_ingested_data(): # Load the list from the file with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'rb') as file: loaded_documents = pickle.load(file) return loaded_documents def get_analysed_data(): # Load the list from the file with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'rb') as file: loaded_documents = pickle.load(file) return loaded_documents def sample_documents(documents: List[Document], n: int) -> List[Document]: """ Samples `n` entries for each unique `"platform"` and `"company"` metadata combination from the input `Document[]`. Args: documents (List[Document]): The input list of `Document` objects. n (int): The number of entries to sample for each unique metadata combination. Returns: List[Document]: A new list of `Document` objects, with `n` entries per unique metadata combination. """ # Create a dictionary to store the sampled documents per metadata combination sampled_docs = {} for doc in documents: combo = (doc.metadata["platform"], doc.metadata["company"]) if combo not in sampled_docs: sampled_docs[combo] = [] # Add the document to the list for its metadata combination, up to n entries if len(sampled_docs[combo]) < n: sampled_docs[combo].append(doc) # Flatten the dictionary into a single list return [doc for docs in sampled_docs.values() for doc in docs] def to_documents(data) -> List[Document]: social_media_document = [] for item in data: social_media_document.append(Document( page_content=str(item["page_content"]), metadata={"platform":item["platform"], "company":item["company"], "ingestion_timestamp":datetime.now().isoformat(), "word_count":len(item["page_content"]["content"]) })) return social_media_document