scoring / download_models.py
Kartikeyssj2's picture
updates
73cfd62
raw
history blame
481 Bytes
import gensim.downloader as api
import os
import whisper
import torch
# LOAD THE WORD2VEC MODEL
word_2_vec = api.load('word2vec-google-news-300')
# SAVE THE WORD2VEC MODEL LOCALLY
word_2_vec.save("word2vec-google-news-300.model")
# LOAD THE WHISPER MODEL
model = whisper.load_model("tiny")
# SAVE THE WHISPER MODEL LOCALLY USING TORCH
save_path = "whisper_tiny_model.pt" # CHOOSE YOUR DESIRED FILE NAME
torch.save(model.state_dict(), save_path) # SAVE MODEL STATE DICTIONARY