import gensim.downloader as api import os import whisper import torch # LOAD THE WORD2VEC MODEL word_2_vec = api.load('word2vec-google-news-300') # SAVE THE WORD2VEC MODEL LOCALLY word_2_vec.save("word2vec-google-news-300.model") # LOAD THE WHISPER MODEL model = whisper.load_model("tiny") # SAVE THE WHISPER MODEL LOCALLY USING TORCH save_path = "whisper_tiny_model.pt" # CHOOSE YOUR DESIRED FILE NAME torch.save(model.state_dict(), save_path) # SAVE MODEL STATE DICTIONARY