Spaces:
Sleeping
Sleeping
KasKniesmeijer
commited on
Commit
·
460bccf
1
Parent(s):
ff6b5fc
added logs
Browse files- .gitignore +3 -0
- app.py +19 -11
- src/main.js +21 -12
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.gradio
|
2 |
+
*.csv
|
3 |
+
*.jpg
|
app.py
CHANGED
@@ -9,12 +9,16 @@ import gradio as gr
|
|
9 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# Initialize processor and model
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
# Define the function to answer questions
|
@@ -63,13 +67,17 @@ def answer_question(image, question):
|
|
63 |
return f"Error: Failed to generate output. {str(e)}"
|
64 |
|
65 |
|
66 |
-
|
|
|
67 |
fn=answer_question,
|
68 |
-
inputs=[
|
|
|
|
|
|
|
69 |
outputs="text",
|
70 |
-
title="
|
71 |
-
description="Upload an image and ask a question
|
72 |
)
|
73 |
|
74 |
if __name__ == "__main__":
|
75 |
-
|
|
|
9 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# Initialize processor and model
|
12 |
+
try:
|
13 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
14 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
15 |
+
"HuggingFaceTB/SmolVLM-Instruct",
|
16 |
+
torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32,
|
17 |
+
_attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
|
18 |
+
).to(DEVICE)
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error loading model or processor: {str(e)}")
|
21 |
+
exit(1)
|
22 |
|
23 |
|
24 |
# Define the function to answer questions
|
|
|
67 |
return f"Error: Failed to generate output. {str(e)}"
|
68 |
|
69 |
|
70 |
+
# Create Gradio interface
|
71 |
+
iface = gr.Interface(
|
72 |
fn=answer_question,
|
73 |
+
inputs=[
|
74 |
+
gr.inputs.Image(type="numpy"),
|
75 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter your question here..."),
|
76 |
+
],
|
77 |
outputs="text",
|
78 |
+
title="Image Question Answering",
|
79 |
+
description="Upload an image and ask a question about it.",
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
+
iface.launch()
|
src/main.js
CHANGED
@@ -19,29 +19,38 @@ async function initializeWebGPU() {
|
|
19 |
console.log("WebGPU initialized.");
|
20 |
}
|
21 |
|
22 |
-
// Submit the image and question to the backend
|
23 |
async function submitQuestion(imageFile, question) {
|
24 |
const formData = new FormData();
|
25 |
formData.append("image", imageFile);
|
26 |
formData.append("text", question);
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
}
|
37 |
-
|
38 |
-
const result = await response.json();
|
39 |
-
return result.data[0];
|
40 |
}
|
41 |
|
42 |
// Handle user interactions
|
43 |
document.getElementById("submit-btn").addEventListener("click", async () => {
|
44 |
const imageFile = document.getElementById("image-upload").files[0];
|
|
|
|
|
|
|
|
|
45 |
const question = document.getElementById("question").value;
|
46 |
|
47 |
const answer = await submitQuestion(imageFile, question);
|
|
|
19 |
console.log("WebGPU initialized.");
|
20 |
}
|
21 |
|
|
|
22 |
async function submitQuestion(imageFile, question) {
|
23 |
const formData = new FormData();
|
24 |
formData.append("image", imageFile);
|
25 |
formData.append("text", question);
|
26 |
|
27 |
+
try {
|
28 |
+
const response = await fetch("/predict", {
|
29 |
+
method: "POST",
|
30 |
+
body: formData,
|
31 |
+
});
|
32 |
+
|
33 |
+
if (!response.ok) {
|
34 |
+
const errorText = await response.text();
|
35 |
+
console.error("Failed to get a response:", response.status, response.statusText, errorText);
|
36 |
+
return `Error: Unable to fetch the answer. Status: ${response.status}, ${response.statusText}`;
|
37 |
+
}
|
38 |
+
|
39 |
+
const result = await response.json();
|
40 |
+
return result.data[0];
|
41 |
+
} catch (error) {
|
42 |
+
console.error("Fetch error:", error);
|
43 |
+
return `Error: Unable to fetch the answer. ${error.message}`;
|
44 |
}
|
|
|
|
|
|
|
45 |
}
|
46 |
|
47 |
// Handle user interactions
|
48 |
document.getElementById("submit-btn").addEventListener("click", async () => {
|
49 |
const imageFile = document.getElementById("image-upload").files[0];
|
50 |
+
if (!imageFile) {
|
51 |
+
alert("Please upload an image.");
|
52 |
+
return;
|
53 |
+
}
|
54 |
const question = document.getElementById("question").value;
|
55 |
|
56 |
const answer = await submitQuestion(imageFile, question);
|