Spaces:
Runtime error
Runtime error
Initial commit of Streamlit loan prediction app
Browse files- app.py +53 -0
- label_encoder_education.joblib +3 -0
- loan_prediction_model.joblib +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
# Load the trained model and encoders
|
7 |
+
loaded_model = joblib.load('loan_prediction_model.joblib')
|
8 |
+
label_encoder_education = joblib.load('label_encoder_education.joblib')
|
9 |
+
|
10 |
+
|
11 |
+
# Title of the Streamlit app
|
12 |
+
st.title("IntuiPy Loan Default Prediction App")
|
13 |
+
|
14 |
+
st.write("Enter the details below to predict whether a loan will default or not.")
|
15 |
+
|
16 |
+
# Function to make predictions based on user input
|
17 |
+
def predict_loan_default(user_input):
|
18 |
+
# Encode categorical features
|
19 |
+
user_input['education'] = label_encoder_education.transform([user_input['education']])[0]
|
20 |
+
|
21 |
+
# Create DataFrame for prediction
|
22 |
+
user_input_df = pd.DataFrame([user_input])
|
23 |
+
|
24 |
+
# Make prediction
|
25 |
+
prediction = loaded_model.predict(user_input_df)
|
26 |
+
return prediction[0] # Return the predicted class
|
27 |
+
|
28 |
+
# Input fields for the user to provide data
|
29 |
+
age = st.number_input("Age", min_value=18, max_value=100, value=30)
|
30 |
+
education = st.selectbox("Education Level", options=label_encoder_education.classes_)
|
31 |
+
loan_amount = st.number_input("Loan Amount", min_value=0, value=5000)
|
32 |
+
asset_cost = st.number_input("Asset Cost", min_value=0, value=6000)
|
33 |
+
no_of_loans = st.number_input("Number of Loans", min_value=0, value=2)
|
34 |
+
no_of_curr_loans = st.number_input("Number of Current Loans", min_value=0, value=1)
|
35 |
+
last_delinq_none = st.selectbox("Previously failed to make required payments on time ?(1 for True, 0 for False)", options=[1, 0])
|
36 |
+
|
37 |
+
# Prepare the input for prediction
|
38 |
+
user_input = {
|
39 |
+
'age': age,
|
40 |
+
'education': education,
|
41 |
+
#'proof_submitted': proof_submitted,
|
42 |
+
'loan_amount': loan_amount,
|
43 |
+
'asset_cost': asset_cost,
|
44 |
+
'no_of_loans': no_of_loans,
|
45 |
+
'no_of_curr_loans': no_of_curr_loans,
|
46 |
+
'last_delinq_none': last_delinq_none
|
47 |
+
}
|
48 |
+
|
49 |
+
# Predict button
|
50 |
+
if st.button("Predict Loan Default"):
|
51 |
+
prediction = predict_loan_default(user_input)
|
52 |
+
result = "There is a likelihood of default. We regret to inform you that we cannot grant your loan" if prediction == 1 else "We are pleased to inform you that you will not default. We will be sending #" +str(loan_amount) +""
|
53 |
+
st.write(f" {result}")
|
label_encoder_education.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edcf0413eed88edf524b04fb818e191a4705443722a2d6a6383a925ff4df284c
|
3 |
+
size 343
|
loan_prediction_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70a421df02baea04e746fc6901c1f8a4a2e92c2927d88e756c68e661bea6c4fc
|
3 |
+
size 1355
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
joblib
|