import torch import torchvision from torch import nn def create_effnetb2_model(num_classes:int=3, seed:int=42): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() #setup pretrained model instance model = torchvision.models.efficientnet_b2(weights=weights) # free base layer in the model for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p = 0.3, inplace= True), nn.Linear(in_features = 1408,out_features =num_classes, bias = True) ) return model, transforms