File size: 4,830 Bytes
b5f6465
 
429022a
b5f6465
 
 
c3d89b9
b5f6465
 
 
429022a
 
b5f6465
 
 
 
 
8087412
b5f6465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11d869e
b5f6465
 
 
 
11d869e
b5f6465
 
 
 
 
 
 
 
 
 
 
 
 
 
11d869e
b5f6465
 
 
 
 
 
 
429022a
 
439ffd3
b5f6465
4be8834
ae97e15
b5f6465
 
 
 
 
 
 
 
 
 
 
 
 
429022a
b5f6465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
import time
import torch

from better_transformer import *


def main():

    # Enable CUDA if available and load in tokenizer
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    tokenizer, EMPTY_TOKENS = load_tokenizer(device)

    st.title("Scaling Transformers")
    st.subheader("UCLA DSU Project, Fall 2023")
    st.markdown("Daniel Mendelevitch  \n Terry Ming  \n Casey Tattersall  \n Sean Tjoa")

    st.header("What Are Transformers? πŸš—πŸ”„πŸ€–")
    
    header_text = """A transformer is a specific type of neural network that uses a mechanism called self-attention to learn the context (and 
        thus meaning) of sequential data. Transformer-based models can be used in many different domains, such as processing language, predicting 
        the weather, or even generating images.  \n\n You might be familiar with ChatGPT, a Transformer-based model which cost over \$100 million to train.  \n In contrast, we spent \$40*.
        """
    st.markdown(header_text)

    st.header("Let's make some stories! πŸ“–")

    # Input from user
    user_input = st.text_input("Enter your prompt:", placeholder="Write a prompt to make a story of your own or leave it empty for a random story!").strip()

    if st.checkbox("Show Prompting Tips"):
        st.markdown("Our model was trained on the TinyStories dataset, a collection of synthetic short stories generated by GPT-4. These stories only contain words and themes that a typical 3-4 year old would understand.")
        st.markdown(
            """
            - Use simple vocabulary - words and themes that would appear in a children's story
            - Avoid using idioms - for example, instead of "hit the gym", say "went to the gym"
            - Include plenty of descriptive adjectives
            - The model often struggles with names - using common names and only including a person's first name can help
            """
        )
    ## Default values for advanced settings
    user_seed = None # Set to a value if we want to rig the "random" demo
    generation_method = "top-k"
    specified_k = 5
    specified_nucleus = 0.5
    specified_temperature = 0.9
    max_tokens = 500

    if st.checkbox("Show Advanced Settings"):
        user_seed = st.number_input("Randomness Seed:", value = None, step = 1, placeholder="Use to replicate response", min_value = 1)
        generation_method = st.selectbox("Method of Generation:", ("top-k", "multinomial", "temperature", "greedy", "nucleus"), index = 0).strip()

        if generation_method == "top-k":
            specified_k = st.number_input("Value for k:", value = 5, step = 1)

        if generation_method == "nucleus":
            specified_nucleus = st.number_input("Value for k:", value = 0.5, step = 0.05, min_value = 0.0, max_value = 1.0)

        if generation_method == "temperature":
            specified_temperature = st.number_input("Value for temperature:", value = 0.9, step = 0.05, min_value = 0.0, max_value = 1.0)

        max_tokens = st.slider('Max Tokens Generated:', 100, 800, 500)





    # model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"])
    # small_model = load_casey_model(tokenizer, device)
    model = load_big_model(tokenizer, device)
    model.to('cuda')
    model.cuda()



    if st.button('Write my story!'):
        placeholder = st.empty()
        # if model_version == 'smoll':
        #     model = load_casey_model(tokenizer, device)
        # elif model_version == 'beeg':
        #     model = load_big_model(tokenizer, device)
        # with placeholder.container():
        #     st.write("Model Loaded! Preparing to Generate...")


        

        with st.spinner(""):
            result = generate(model, tokenizer, device, method=generation_method, k=specified_k, 
                            p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens, 
                            cond=user_input, deterministic=user_seed)

        streamed_input = ""
        for word in user_input.split(' '):
            streamed_input += word
            with placeholder.container():
                st.markdown(f"**{streamed_input}**")
            streamed_input += " "
            time.sleep(0.1)

        if user_input != "": ##conditional
            result = result[len(user_input) + 3 :]
            streamed_result = f"**{streamed_input[:-1]}**"
            time.sleep(1)
        else: ##unconditional
            streamed_result = ""


        for word in result.split(' '):
            streamed_result += word + ' '
            with placeholder.container():
                st.write(streamed_result)
            time.sleep(0.1)
        if st.button('Clear Output'):
            placeholder = st.empty()




if __name__ == "__main__":
    main()