Spaces:
Sleeping
Sleeping
import streamlit as st | |
import time | |
import torch | |
from better_transformer import * | |
def main(): | |
# Enable CUDA if available and load in tokenizer | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
tokenizer, EMPTY_TOKENS = load_tokenizer(device) | |
st.title("Scaling Transformers") | |
st.subheader("UCLA DSU Project, Fall 2023") | |
st.markdown("Daniel Mendelevitch \n Terry Ming \n Casey Tattersall \n Sean Tjoa") | |
st.header("What Are Transformers? πππ€") | |
header_text = """A transformer is a specific type of neural network that uses a mechanism called self-attention to learn the context (and | |
thus meaning) of sequential data. Transformer-based models can be used in many different domains, such as processing language, predicting | |
the weather, or even generating images. \n\n You might be familiar with ChatGPT, a Transformer-based model which cost over \$100 million to train. \n In contrast, we spent \$40*. | |
""" | |
st.markdown(header_text) | |
st.header("Let's make some stories! π") | |
# Input from user | |
user_input = st.text_input("Enter your prompt:", placeholder="Write a prompt to make a story of your own or leave it empty for a random story!").strip() | |
if st.checkbox("Show Prompting Tips"): | |
st.markdown("Our model was trained on the TinyStories dataset, a collection of synthetic short stories generated by GPT-4. These stories only contain words and themes that a typical 3-4 year old would understand.") | |
st.markdown( | |
""" | |
- Use simple vocabulary - words and themes that would appear in a children's story | |
- Avoid using idioms - for example, instead of "hit the gym", say "went to the gym" | |
- Include plenty of descriptive adjectives | |
- The model often struggles with names - using common names and only including a person's first name can help | |
""" | |
) | |
## Default values for advanced settings | |
user_seed = 27 # Remove if we're not rigging the "random" demo | |
generation_method = "top-k" | |
specified_k = 5 | |
specified_nucleus = 0.5 | |
specified_temperature = 0.9 | |
max_tokens = 400 | |
if st.checkbox("Show Advanced Settings"): | |
user_seed = st.number_input("Randomness Seed:", value = None, step = 1, placeholder="Use to replicate response", min_value = 1) | |
generation_method = st.selectbox("Method of Generation:", ("top-k", "multinomial", "temperature", "greedy", "nucleus"), index = 0).strip() | |
if generation_method == "top-k": | |
specified_k = st.number_input("Value for k:", value = 5, step = 1) | |
if generation_method == "nucleus": | |
specified_nucleus = st.number_input("Value for k:", value = 0.5, step = 0.05, min_value = 0.0, max_value = 1.0) | |
if generation_method == "temperature": | |
specified_temperature = st.number_input("Value for temperature:", value = 0.9, step = 0.05, min_value = 0.0, max_value = 1.0) | |
max_tokens = st.slider('Max Tokens Generated:', 100, 500, 400) | |
## Settings Clean up | |
if not user_seed: | |
user_seed = 7 | |
# model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"]) | |
# small_model = load_casey_model(tokenizer, device) | |
model = load_big_model(tokenizer, device) | |
model.to('cuda') | |
model.cuda() | |
if st.button('Write my story!'): | |
placeholder = st.empty() | |
# if model_version == 'smoll': | |
# model = load_casey_model(tokenizer, device) | |
# elif model_version == 'beeg': | |
# model = load_big_model(tokenizer, device) | |
# with placeholder.container(): | |
# st.write("Model Loaded! Preparing to Generate...") | |
with st.spinner(""): | |
result = generate(model, tokenizer, device, method=generation_method, k=specified_k, | |
p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens, | |
cond=user_input, deterministic=user_seed) | |
streamed_input = "" | |
for word in user_input.split(' '): | |
streamed_input += word | |
with placeholder.container(): | |
st.markdown(f"**{streamed_input}**") | |
streamed_input += " " | |
time.sleep(0.1) | |
if user_input != "": ##conditional | |
result = result[len(user_input) + 3 :] | |
streamed_result = f"**{streamed_input[:-1]}**" | |
time.sleep(1) | |
else: ##unconditional | |
streamed_result = "" | |
for word in result.split(' '): | |
streamed_result += word + ' ' | |
with placeholder.container(): | |
st.write(streamed_result) | |
time.sleep(0.1) | |
if st.button('Clear Output'): | |
placeholder = st.empty() | |
if __name__ == "__main__": | |
main() | |