TinyStories_Transformer / better_transformer.py
Kc-12's picture
model files uploaded
b5f6465
raw
history blame
18.5 kB
import os
import json
import random
import time
import streamlit as st
import re
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoTokenizer
MODEL_FILE = r'bt_8_LAYERs_100_DATA_PCT_768_EMBD_DIM_epoch_10.pt' ##place model file in same directory as app.py
# Better Transformer Class –––––––––––––––––––––––––––––––––––––––––––––––
class MLP(nn.Module):
def __init__(self, n_embd, dropout=0.1):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.GELU(), # replaced ReLU
nn.Dropout(p=dropout),
nn.Linear(4 * n_embd, n_embd),
)
def forward(self, x):
return self.net(x)
class MultiHeadAttention(nn.Module):
def __init__(self, n_embd, n_head, seq_length, dropout=0.1):
super().__init__()
self.n_embd = n_embd
self.n_head = n_head
self.head_dim = n_embd // n_head # Dimension of each head's key, query, and value
assert self.head_dim * n_head == self.n_embd, "n_embd must be divisible by n_head"
self.seq_length = seq_length
self.drop = nn.Dropout(p=dropout)
self.query = nn.Linear(n_embd, n_embd, bias=False)
self.key = nn.Linear(n_embd, n_embd, bias=False)
self.value = nn.Linear(n_embd, n_embd, bias=False)
self.out = nn.Linear(n_embd, n_embd, bias=False) # multi-head combining weight matrix
def split_heads(self, x):
B, S, D = x.size()
# split dimension into n_head * head_dim, then transpose the sequence length w/ n_head
# output: [B, n_head, S, head_dim]
return x.view(B, S, self.n_head, self.head_dim).transpose(1, 2)
def combine_heads(self, x):
# use permute or transpose to reverse
# taking a view earlier may produce a non-contiguous tensor, so we convert back because view needs a contiguous input
B, _, S, head_dim = x.size() # _ is n_head which we will merge
# output: [B, S, n_embd]
return x.transpose(1, 2).contiguous().view(B, S, self.n_embd)
def scaled_dot_product(self, q, k, v, dropout, mask=None):
# q,k,v are [B, n_head, S, head_dim]
# the key transpose sets up batch multiplication s.t. wei = [B, n_head, S, S]
wei = q @ k.transpose(-2,-1) / np.sqrt(self.head_dim)
# mask is [B, 1, S, S], so simply broadcasted across each head and works as expected
if mask is not None:
wei = wei.masked_fill(mask, float('-inf'))
wei = dropout(F.softmax(wei, dim=-1))
out = wei @ v
return out
def forward(self, x, mask=None):
# x: (B, S, n_embd)
# Step 1 and 2: Project full query, key, value, then split via reshaping
q = self.split_heads(self.query(x))
k = self.split_heads(self.key(x))
v = self.split_heads(self.value(x))
# Step 3: Compute scaled dot-product attention with causal mask
# not done. should use generate_mask
attn = self.scaled_dot_product(q, k, v, self.drop, mask)
# Step 4 and 5: Concatenate attention scores, return projected output matrix
out = self.out(self.combine_heads(attn)) # (B, S, n_embd)
return out
class Block(nn.Module):
def __init__(self, n_embd, n_head, seq_length, dropout=0.1):
super().__init__()
self.sa = MultiHeadAttention(n_embd, n_head, seq_length, dropout)
self.mlp = MLP(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
# experimentally, apply layer norm before attention/MLP
self.drop = nn.Dropout(p=dropout)
def forward(self, x, mask):
# residual connection (stream)
x = x + self.drop(self.sa(self.ln1(x), mask))
x = x + self.drop(self.mlp(self.ln2(x)))
return x
class PositionalEncoding(nn.Module):
"""
Formula taken from the original Transformer paper:
PE(pos, 2i (even)) = sin(pos/(10000^{2i/d_model}))
PE(pos, 2i+1 (odd)) = cos(pos/(10000^{2i/d_model}))
See reference for more details:
https://kikaben.com/transformers-positional-encoding/
"""
def __init__(self, d_model, max_len):
# just set d_model = n_embd and max_len = seq_len
super().__init__()
position = torch.arange(max_len).unsqueeze(1) # [max_len, 1]
divisor = torch.exp(torch.arange(0, d_model, 2) * (-np.log(10000.0) / d_model)) # [d_model / 2, half for each of sin and cos]
pe = torch.zeros(max_len, d_model)
pe[:, 0::2] = torch.sin(position * divisor) # 0 for second dim or :?
pe[:, 1::2] = torch.cos(position * divisor)
self.register_buffer('pe', pe) # result: self.pe = [max_len, d_model], mapping each token index to a vector of length d_model as desired
def forward(self, x):
# x = torch.arange(seq_length) has shape [seq_length], so x.size(0) extracts it, then we index self.pe for the first seq_length mappings
# note we do not add the positional embeddings to x itself yet, we simply return them
# output = (seq_length, d_model=n_embd)
return self.pe[:x.size(0)]
class BetterTransformer(nn.Module):
def __init__(self, vocab_size, seq_length, n_embd, n_head, n_layer, pad_idx, eos_token_id, device, dropout=0.1):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, n_embd, padding_idx=pad_idx)
# we need to make sure the embedding ignores the padding token right?
self.position_embedding = PositionalEncoding(n_embd, seq_length)
self.blocks = nn.Sequential(*[Block(n_embd,
n_head,
seq_length,
dropout) for _ in range(n_layer)])
self.lm_head = nn.Linear(n_embd, vocab_size)
self.drop = nn.Dropout(dropout)
self.seq_length = seq_length
self.pad_idx = pad_idx
self.eos_token_id = eos_token_id
self.device = device
self.init_params()
# optional weight initialization (e.g. Xavier uniform)
def init_params(self, default_initialization=False):
if not default_initialization:
for name, p in self.named_parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def get_causal_mask(self, x):
"""
Generates causal mask for decoding
"""
seq_len = x.size(-1) # x = (batch_size x seq_len)
attn_shape = (1, seq_len, seq_len)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8') # k = 1 shifts the diagonal, so that the main diagonal gets 0's
return (torch.from_numpy(subsequent_mask) == 0).to(self.device) # (1, seq_len x seq_len)
# True along main diagonal + below, False elsewhere
def get_pad_mask(self, x, pad_idx):
"""
Generates padding mask
"""
return (x != pad_idx).unsqueeze(1).unsqueeze(-2).to(self.device)
# (batch_size x 1 x 1 x seq_len)
def forward(self, x, targets=None):
# should alr be int64 tokens but explicit cast in case
x = x.to(torch.int64)
B, S = x.shape
# get mask
mask = self.get_pad_mask(x, self.pad_idx) & self.get_causal_mask(x).to(self.device)
# mask = (batch_size x 1 x seq_len x seq_len)
tok_emb = self.token_embedding(x)
pos_emb = self.position_embedding(torch.arange(S))
x = self.drop(tok_emb + pos_emb)
# (B, S, n_embd)
for block in self.blocks:
x = block(x, ~mask) # (batch_size, seq_length, n_embd)
# negate mask to fill originally False values with -inf later
logits = self.lm_head(x) # (batch_size, seq_length, vocab_size)
# this code assumes teacher forcingβ€”β€”for each text of seq length S we have S autoregressive predictions,
# thus we have B*S logits and B*S targets
if targets is None:
loss = None
else:
B, S, C = logits.shape
logits = logits.view(B*S, C)
targets = targets.view(B*S)
loss = F.cross_entropy(logits, targets, ignore_index=self.pad_idx)
# we need to make sure loss ignores the padding token right?
# this helps it avoid wasting compute on learning PAD -> PAD, etc.
return logits, loss
def generate(self, input_ids, method='multinomial',
max_new_tokens=1000, temp=None,
num_beams=None, p_nucleus=None, k=None):
# TODO: see Huggingface's .generate() function
# https://huggingface.co/transformers/v3.4.0/_modules/transformers/generation_utils.html
if method == 'temperature':
assert (temp is not None) and (0 < temp) and (temp <= 1)
# if method == 'num_beams':
# assert isinstance(num_beams, int) and (num_beams) > 0 and (num_beams) < 100
if method == 'top-k':
assert isinstance(k, int) and (k > 0)
# input_ids begins as (batch_size, seq_length)
for _ in range(max_new_tokens):
if method in ['multinomial', 'temperature', 'greedy', 'nucleus', 'top-k']:
# i) Truncate to the most recent `max length` tokens
text_cond = input_ids[:, -self.seq_length:]
# ii) Retrieve predictions
logits, loss = self(text_cond) # no loss because no targets ofc
# model output: (batch_size, seq_length, vocab_size)
# iii) Find last token logits of each
logits = logits[:, -1, :] # (batch_size, vocab_size)
# aside: if temperature sampling, divide logits by temp before applying softmax
if method == 'temperature':
logits = logits / temp
# iv) Take softmax along each
probs = F.softmax(logits, dim=-1)
# v) Sample next token depending on method
if method == 'greedy':
next_idx = probs.argmax(dim=-1).unsqueeze(-1)
elif method in ['multinomial', 'temperature', 'nucleus', 'top-k']:
if method == 'nucleus':
assert p_nucleus is not None and (0 < p_nucleus) and (p_nucleus <= 1)
sorted_probs, sorted_idx = probs.sort(dim=-1, descending=True)
prob_cumsum = sorted_probs.cumsum(dim=-1)
idx_remove = prob_cumsum > p_nucleus
# shift one right to ensure the first token is above the threshold
idx_remove[..., 1:] = idx_remove[..., :-1].clone()
idx_remove[..., 0] = False
# retrieve original indices by reverse-sorting
remove_mask = idx_remove.gather(dim=-1,
index=sorted_idx.argsort(dim=-1))
# ^ specifically, we do this by first argsorting the indices which were returned from argsort. this is crazy y'all
# you can show that this returns indices that when used to subset a sorted array, returns the original array in unsorted order
# https://stackoverflow.com/questions/52127723/pytorch-better-way-to-get-back-original-tensor-order-after-torch-sort
# torch.gather is how we apply a multi-dimensional index
# https://stackoverflow.com/questions/50999977/what-does-the-gather-function-do-in-pytorch-in-layman-terms
probs[remove_mask] = 0
if method == 'top-k':
remove_mask = probs < torch.topk(probs, k).values[..., -1, None] # the topk returns (B, 1), leaving only the
# kth largest probs (i.e. the cutoff value for each). Then mask is same size as probs (B, vocab_size)
probs[remove_mask] = 0
# Sample probabilistically via scores
next_idx = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
# vi) Autoregressively append to input_text
input_ids = torch.cat((input_ids, next_idx), dim=-1)
# end prematurely if <EOS> generated
if next_idx == self.eos_token_id:
break
# now input_text = (batch_size, seq_length + 1)
return input_ids
# END OF Better Transformer Class –––––––––––––––––––––––––––––––––––––––––––––––
def set_seed(seed = 42):
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# torch.cuda.manual_seed_all(seed) # if multi-GPU
torch.backends.cudnn.deterministic=True # only applies to CUDA convolution operations
torch.backends.cudnn.benchmark = False
# usually CuDNN has heuristics as to which algorithm to pick. cudnn.benchmark benchmarks several algorithms and picks the fastest
# often helpful if your input shapes are fixed and not changing a lot during training
# however, this means it may pick a different algorithm even when the deterministic flag is set.
# As such it is good practice to turn off cudnn.benchmark when turning on cudnn.deterministic
def load_tokenizer(device):
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
if tokenizer.pad_token is None:
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
EMPTY_TOKENS = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device)
return tokenizer, EMPTY_TOKENS
def load_big_model(tokenizer, device):
## Model architecture
set_seed(42)
N_HEAD = 16
N_LAYER = 8
N_EMBD = 768
VOCAB_SIZE = 50258
SEQ_LENGTH = 384
model = BetterTransformer(VOCAB_SIZE, SEQ_LENGTH, N_EMBD, N_HEAD, N_LAYER, tokenizer.pad_token_id, tokenizer.eos_token_id, device=device)
model.init_params()
path = MODEL_FILE
model.load_state_dict(torch.load(path, map_location=device)["model_state_dict"])
return model
def generate(model, tokenizer, device, method=None, k=None,
p_nucleus=None, temp=None, max_new_tokens=None, cond="", deterministic=None):
"""
Wrapper for generating text using the specified model. Generates unconditionally if cond=None.
Inputs:
-model: Decoder model to be used for text generation
-tokenizer: Compatible tokenizer
-device: Device of model (CPU/CUDA)
-method (str): Decoding method for text generation ('multinomial', 'temperature', 'greedy', 'nucleus', or 'top-k')
-k (int): Positive integer for top-k logits to sample if top-k decoding
-p_nucleus (float/int): Cumulative probability cutoff if nucleus/top-p decoding
-temp (float/int): Temperature if temperature decoding
-max_new_tokens (int): Maximum number of tokens to generate
-cond (str=None): If provided, will serve as conditional prompt for text generation
-deterministic (int): If deterministic, uses the specified seed for model generation
Returns:
-res (str): Generated text string
"""
assert method in ['multinomial', 'temperature', 'greedy', 'nucleus', 'top-k'], \
"method must be 'multinomial', 'temperature', 'greedy', 'nucleus', or 'top-k'"
#if method == 'temperature':
# assert (temp is not None) and isinstance(temp, (int, float)) and (0 < temp) and (temp <= 1), \
# "temp must be defined as a number between (0, 1]"
#if method == 'nucleus':
# assert (p_nucleus is not None) and isinstance(p_nucleus, (int, float)) and (0 < p_nucleus) and (p_nucleus <= 1), \
# "p_nucleus must be defined as a number between (0, 1]"
## if method == 'num_beams':
## assert isinstance(num_beams, int) and (num_beams) > 0 and (num_beams) < 100
#if method == 'top-k':
# assert (k is not None) and isinstance(k, int) and (k > 0) and (k < SEQ_LENGTH), \
# "k must be defined as an integer greater than 0 and less than the model sequence length"
#if max_new_tokens is None:
# print('No max_new_tokens provided, using a default value of 250\n')
# max_new_tokens = 250
#assert (max_new_tokens is not None) and isinstance(max_new_tokens, int) and (max_new_tokens) > 0 and (max_new_tokens) <= 1000, \
#"max_new_tokens must be an integer between (0, 1000]"
if deterministic is not None:
set_seed(deterministic)
if cond != "":
cond_tokens = tokenizer(cond).input_ids
gen_tokens = model.generate(torch.tensor(cond_tokens).unsqueeze(0).long().to(device),
method=method, k=k, p_nucleus=p_nucleus, temp=temp,
max_new_tokens=max_new_tokens)[0]
# Insert delimiter to indicate where prompt ends
gen_prep = torch.zeros(len(gen_tokens)+2).long() # make space for two more tokens for delimiter
gen_prep -= 1
gen_prep[:len(cond_tokens)] = gen_tokens[:len(cond_tokens)]
gen_prep[-(len(gen_tokens)-len(cond_tokens)):] = gen_tokens[-(len(gen_tokens)-len(cond_tokens)):]
gen_prep[gen_prep == -1] = torch.tensor(tokenizer.encode(' || ')) # insert tokens for || in between
res = tokenizer.decode(gen_prep)
res = re.sub(re.escape(tokenizer.bos_token), '', res, count=1) ## Remove end token
else:
empty_tokens = torch.full((1,1), tokenizer.bos_token_id, dtype=torch.long).to(device)
res = tokenizer.batch_decode(model.generate(empty_tokens,
method=method, k=k,
p_nucleus=p_nucleus, temp=temp,
max_new_tokens=max_new_tokens))[0]
res = re.sub(re.escape(tokenizer.bos_token), '', res, count=2) ## Remove start and end tokens
# Clean up Unicode character issues
# 'Ò€œ' then 'Ò€' = opening and closing double quotes
# 'Ò€ℒ' = apostrophe
res = re.sub(r'Ò€œ', '"', res)
res = re.sub(r'Ò€ℒ', "'", res)
res = re.sub(r'Ò€', '"', res)
res = res + " [END]" ## better end token
return res