import streamlit as st import time from better_transformer import * def main(): # Enable CUDA if available and load in tokenizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer, EMPTY_TOKENS = load_tokenizer(device) st.title("TinyStories Transformer Demo 🤖") st.subheader("Data and Training") st.markdown("""We used the dataset from Microsoft Research's [TinyStories Paper](https://arxiv.org/pdf/2305.07759.pdf) (Eldan and Li), which consists of 2.1 million synthetic short children's stories generated by GPT-4, to train a PyTorch Transformer LLM.""") st.markdown("""Our model uses EleutherAI's [gpt-neo-1.3B tokenizer](https://huggingface.co/EleutherAI/gpt-neo-1.3B) (vocab size 50,257) and consists of 8 transformer blocks, 16 attention heads, and an embedding dimension of 768, for a total of ~56M non-embedding parameters. The model was trained overnight on 8 H100 GPUs, achieving a lower cross-entropy validation loss than any of the models in the TinyStories paper (likely due to a larger vocab size).""") st.markdown("""Despite the simple themes and limited vocabulary present in the training data, the model is quite effective at generating new short stories. **Try it out below!**""") st.subheader("How Do I Prompt?") st.markdown( """ Instead of generating a new story from scratch, you can "prompt" the model by writing the first few words of a story, and let it finish from there. It can even jump in mid-sentence! The model can struggle with some prompts, especially those outside of its limited domain. If a response isn't satisfactory, try repeating the generation, or make the following modifications: """ ) st.markdown( """ - **Use simple vocabulary and syntax** - words, structures, and themes you'd see in a children's story. - Use common first names only - the model can struggle with longer or uncommon names. `SAMPLE PROMPT: Once upon a time, there was a little girl named Lily. She was very adventurous. She` """ ) st.subheader("Let's make some stories! 📖") # Input from user user_input = st.text_input("Enter your prompt:", placeholder="Write a prompt to make a story of your own, or leave it empty for a random story!").strip() ## Default values for advanced settings user_seed = None # Remove if we're not rigging the "random" demo generation_method = "top-k" specified_k = 5 specified_nucleus = 0.5 specified_temperature = 0.4 max_tokens = 1000 if st.checkbox("Show Advanced Settings"): user_seed = st.number_input("Randomness Seed:", value = None, step = 1, placeholder="Use to replicate response", min_value = 1) generation_method = st.selectbox("Method of Generation:", ("top-k", "nucleus", "temperature", "multinomial", "greedy"), index = 0).strip() if generation_method == "top-k": specified_k = st.number_input("Value for k:", value = 5, step = 1) if generation_method == "nucleus": specified_nucleus = st.number_input("Nucleus Cutoff:", value = 0.5, step = 0.05, min_value = 0.0, max_value = 1.0) if generation_method == "temperature": specified_temperature = st.number_input("Value for temperature:", value = 0.4, step = 0.05, min_value = 0.0, max_value = 1.0) max_tokens = st.slider('Max Tokens Generated:', 50, 1000, 1000) # model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"]) # small_model = load_casey_model(tokenizer, device) model = load_big_model(tokenizer, device) model.to('cuda') model.cuda() if st.button('Write my story!'): placeholder = st.empty() # if model_version == 'smoll': # model = load_casey_model(tokenizer, device) # elif model_version == 'beeg': # model = load_big_model(tokenizer, device) # with placeholder.container(): # st.write("Model Loaded! Preparing to Generate...") with st.spinner(""): result = generate(model, tokenizer, device, method=generation_method, k=specified_k, p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens, cond=user_input, deterministic=user_seed) st.markdown("\n") st.markdown("\n") st.markdown("\n") st.markdown("\n") streamed_input = "" for word in user_input.split(' '): streamed_input += word with placeholder.container(): st.markdown(f"**{streamed_input}**") streamed_input += " " time.sleep(0.1) if user_input != "": ##conditional result = result[len(user_input) + 3 :] streamed_result = f"**{streamed_input[:-1]}**" time.sleep(1) else: ##unconditional streamed_result = "" for word in result.split(' '): streamed_result += word + ' ' with placeholder.container(): st.markdown(f"{streamed_result}") time.sleep(0.1) if st.button('Clear Output'): placeholder = st.empty() st.markdown('####') st.caption('UCLA DSU Project Fall 2023: Daniel Mendelevitch, Terry Ming, Casey Tattersall, Sean Tjoa') st.caption(r'Data Attribution: Tinystories (License: CDLA-Sharing-1.0) https://arxiv.org/abs/2305.07759') if __name__ == "__main__": main()