import streamlit as st import time import torch from better_transformer import * def main(): # Enable CUDA if available and load in tokenizer device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer, EMPTY_TOKENS = load_tokenizer(device) model.cuda() st.title("Scaling Transformers") st.subheader("UCLA DSU Project, Fall 2023") st.markdown("Daniel Mendelevitch \n Terry Ming \n Casey Tattersall \n Sean Tjoa") st.header("What Are Transformers? 🚗🔄🤖") header_text = """A transformer is a specific type of neural network that uses a mechanism called self-attention to learn the context (and thus meaning) of sequential data. Transformer-based models can be used in many different domains, such as processing language, predicting the weather, or even generating images. \n\n You might be familiar with ChatGPT, a Transformer-based model which cost over \$100 million to train. \n In contrast, we spent \$40*. """ st.markdown(header_text) st.header("Let's make some stories! 📖") # Input from user user_input = st.text_input("Enter your prompt:", placeholder="Write a prompt to make a story of your own or leave it empty for a random story!").strip() if st.checkbox("Show Prompting Tips"): st.markdown("Our model was trained on the TinyStories dataset, a collection of synthetic short stories generated by GPT-4. These stories only contain words and themes that a typical 3-4 year old would understand.") st.markdown( """ - Use simple vocabulary - words and themes that would appear in a children's story - Avoid using idioms - for example, instead of "hit the gym", say "went to the gym" - Include plenty of descriptive adjectives - The model often struggles with names - using common names and only including a person's first name can help """ ) ## Default values for advanced settings user_seed = 27 # Remove if we're not rigging the "random" demo generation_method = "top-k" specified_k = 5 specified_nucleus = 0.5 specified_temperature = 0.9 max_tokens = 400 if st.checkbox("Show Advanced Settings"): user_seed = st.number_input("Randomness Seed:", value = None, step = 1, placeholder="Use to replicate response", min_value = 1) generation_method = st.selectbox("Method of Generation:", ("top-k", "multinomial", "temperature", "greedy", "nucleus"), index = 0).strip() if generation_method == "top-k": specified_k = st.number_input("Value for k:", value = 5, step = 1) if generation_method == "nucleus": specified_nucleus = st.number_input("Value for k:", value = 0.5, step = 0.05, min_value = 0.0, max_value = 1.0) if generation_method == "temperature": specified_temperature = st.number_input("Value for temperature:", value = 0.9, step = 0.05, min_value = 0.0, max_value = 1.0) max_tokens = st.slider('Max Tokens Generated:', 100, 500, 400) ## Settings Clean up if not user_seed: user_seed = 7 # model_version = st.radio("Which model would you like to use?", ["smoll", "beeg"]) # small_model = load_casey_model(tokenizer, device) model = load_big_model(tokenizer, device) model.to('cuda') if st.button('Write my story!'): placeholder = st.empty() # if model_version == 'smoll': # model = load_casey_model(tokenizer, device) # elif model_version == 'beeg': # model = load_big_model(tokenizer, device) # with placeholder.container(): # st.write("Model Loaded! Preparing to Generate...") with st.spinner(""): result = generate(model, tokenizer, device, method=generation_method, k=specified_k, p_nucleus=specified_nucleus, temp=specified_temperature, max_new_tokens=max_tokens, cond=user_input, deterministic=user_seed) streamed_input = "" for word in user_input.split(' '): streamed_input += word with placeholder.container(): st.markdown(f"**{streamed_input}**") streamed_input += " " time.sleep(0.1) if user_input != "": ##conditional result = result[len(user_input) + 3 :] streamed_result = f"**{streamed_input[:-1]}**" time.sleep(1) else: ##unconditional streamed_result = "" for word in result.split(' '): streamed_result += word + ' ' with placeholder.container(): st.write(streamed_result) time.sleep(0.1) if st.button('Clear Output'): placeholder = st.empty() if __name__ == "__main__": main()