import os import math import torch import numpy as np from rrdbnet_arch import RRDBNet from torch.nn import functional as F class RealESRNet(object): def __init__(self, base_dir='./', model=None, scale=2, tile_size=0, tile_pad=10, device='cuda'): self.base_dir = base_dir self.scale = scale self.tile_size = tile_size self.tile_pad = tile_pad self.device = device self.load_srmodel(base_dir, model) def load_srmodel(self, base_dir, model): self.srmodel = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=32, num_block=23, num_grow_ch=32, scale=self.scale) if model is None: loadnet = torch.load(os.path.join(self.base_dir, 'weights', 'realesrnet_x%d.pth'%self.scale)) else: loadnet = torch.load(os.path.join(self.base_dir, 'weights', model+'_x%d.pth'%self.scale)) #print(loadnet['params_ema'].keys) self.srmodel.load_state_dict(loadnet['params_ema'], strict=True) self.srmodel.eval() self.srmodel = self.srmodel.to(self.device) def tile_process(self, img): """It will first crop input images to tiles, and then process each tile. Finally, all the processed tiles are merged into one images. Modified from: https://github.com/ata4/esrgan-launcher """ batch, channel, height, width = img.shape output_height = height * self.scale output_width = width * self.scale output_shape = (batch, channel, output_height, output_width) # start with black image output = img.new_zeros(output_shape) tiles_x = math.ceil(width / self.tile_size) tiles_y = math.ceil(height / self.tile_size) # loop over all tiles for y in range(tiles_y): for x in range(tiles_x): # extract tile from input image ofs_x = x * self.tile_size ofs_y = y * self.tile_size # input tile area on total image input_start_x = ofs_x input_end_x = min(ofs_x + self.tile_size, width) input_start_y = ofs_y input_end_y = min(ofs_y + self.tile_size, height) # input tile area on total image with padding input_start_x_pad = max(input_start_x - self.tile_pad, 0) input_end_x_pad = min(input_end_x + self.tile_pad, width) input_start_y_pad = max(input_start_y - self.tile_pad, 0) input_end_y_pad = min(input_end_y + self.tile_pad, height) # input tile dimensions input_tile_width = input_end_x - input_start_x input_tile_height = input_end_y - input_start_y tile_idx = y * tiles_x + x + 1 input_tile = img[:, :, input_start_y_pad:input_end_y_pad, input_start_x_pad:input_end_x_pad] # upscale tile try: with torch.no_grad(): output_tile = self.srmodel(input_tile) except RuntimeError as error: print('Error', error) return None if tile_idx%10==0: print(f'\tTile {tile_idx}/{tiles_x * tiles_y}') # output tile area on total image output_start_x = input_start_x * self.scale output_end_x = input_end_x * self.scale output_start_y = input_start_y * self.scale output_end_y = input_end_y * self.scale # output tile area without padding output_start_x_tile = (input_start_x - input_start_x_pad) * self.scale output_end_x_tile = output_start_x_tile + input_tile_width * self.scale output_start_y_tile = (input_start_y - input_start_y_pad) * self.scale output_end_y_tile = output_start_y_tile + input_tile_height * self.scale # put tile into output image output[:, :, output_start_y:output_end_y, output_start_x:output_end_x] = output_tile[:, :, output_start_y_tile:output_end_y_tile, output_start_x_tile:output_end_x_tile] return output def process(self, img): img = img.astype(np.float32) / 255. img = torch.from_numpy(np.transpose(img[:, :, [2, 1, 0]], (2, 0, 1))).float() img = img.unsqueeze(0).to(self.device) if self.scale == 2: mod_scale = 2 elif self.scale == 1: mod_scale = 4 else: mod_scale = None if mod_scale is not None: h_pad, w_pad = 0, 0 _, _, h, w = img.size() if (h % mod_scale != 0): h_pad = (mod_scale - h % mod_scale) if (w % mod_scale != 0): w_pad = (mod_scale - w % mod_scale) img = F.pad(img, (0, w_pad, 0, h_pad), 'reflect') try: with torch.no_grad(): if self.tile_size > 0: output = self.tile_process(img) else: output = self.srmodel(img) del img # remove extra pad if mod_scale is not None: _, _, h, w = output.size() output = output[:, :, 0:h - h_pad, 0:w - w_pad] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) output = (output * 255.0).round().astype(np.uint8) return output except Exception as e: print('sr failed:', e) return None