import gradio as gr import os import cv2 from rembg import new_session, remove from rembg.sessions import sessions_class def inference(file, mask, model, x, y): im = cv2.imread(file, cv2.IMREAD_COLOR) input_path = "input.png" output_path = "output.png" cv2.imwrite(input_path, im) with open(input_path, 'rb') as i: with open(output_path, 'wb') as o: input = i.read() session = new_session(model) output = remove( input, session=session, **{ "sam_prompt": [{"type": "point", "data": [x, y], "label": 1}] }, only_mask=(mask == "Mask only") ) o.write(output) return output_path title = "RemBG" description = "Gradio demo for **[RemBG](https://github.com/danielgatis/rembg)**. To use it, simply upload your image, select a model, click Process, and wait." badge = """
""" def get_coords(evt: gr.SelectData) -> tuple: return evt.index[0], evt.index[1] def show_coords(model: str): visible = model == "sam" return gr.update(visible=visible), gr.update(visible=visible), gr.update(visible=visible) for session in sessions_class: session.download_models() with gr.Blocks() as app: gr.Markdown(f"# {title}") gr.Markdown(description) with gr.Row(): inputs = gr.Image(type="filepath", label="Input Image") outputs = gr.Image(type="filepath", label="Output Image") with gr.Row(): mask_option = gr.Radio( ["Default", "Mask only"], value="Default", label="Output Type" ) model_selector = gr.Dropdown( [ "u2net", "u2netp", "u2net_human_seg", "u2net_cloth_seg", "silueta", "isnet-general-use", "isnet-anime", "sam", "birefnet-general", "birefnet-general-lite", "birefnet-portrait", "birefnet-dis", "birefnet-hrsod", "birefnet-cod", "birefnet-massive" ], value="isnet-general-use", label="Model Selection" ) extra = gr.Markdown("## Click on the image to capture coordinates (for SAM model)", visible=False) x = gr.Number(label="Mouse X Coordinate", visible=False) y = gr.Number(label="Mouse Y Coordinate", visible=False) model_selector.change(show_coords, inputs=model_selector, outputs=[x, y, extra]) inputs.select(get_coords, None, [x, y]) gr.Button("Process Image").click( inference, inputs=[inputs, mask_option, model_selector, x, y], outputs=outputs ) gr.Examples( examples=[ ["lion.png", "Default", "u2net", None, None], ["girl.jpg", "Default", "u2net", None, None], ["anime-girl.jpg", "Default", "isnet-anime", None, None] ], inputs=[inputs, mask_option, model_selector, x, y], outputs=outputs ) gr.HTML(badge) app.launch()