Spaces:
Running
on
T4
Running
on
T4
Kevin
commited on
Commit
•
6ee2eb6
1
Parent(s):
34b176d
Add app
Browse files- .gitignore +4 -0
- Biden.jpg +0 -0
- Trump.jpg +0 -0
- alpha_scheduler.py +54 -0
- app.py +306 -0
- lora_utils.py +318 -0
- morph_attn.py +827 -0
- requirements.txt +14 -0
.gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
lora/
|
2 |
+
__pycache__/
|
3 |
+
results/
|
4 |
+
core*
|
Biden.jpg
ADDED
Trump.jpg
ADDED
alpha_scheduler.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import bisect
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import lpips
|
5 |
+
|
6 |
+
perceptual_loss = lpips.LPIPS()
|
7 |
+
|
8 |
+
|
9 |
+
def distance(img_a, img_b):
|
10 |
+
return perceptual_loss(img_a, img_b).item()
|
11 |
+
# return F.mse_loss(img_a, img_b).item()
|
12 |
+
|
13 |
+
|
14 |
+
class AlphaScheduler:
|
15 |
+
def __init__(self):
|
16 |
+
...
|
17 |
+
|
18 |
+
def from_imgs(self, imgs):
|
19 |
+
self.__num_values = len(imgs)
|
20 |
+
self.__values = [0]
|
21 |
+
for i in range(self.__num_values - 1):
|
22 |
+
dis = distance(imgs[i], imgs[i + 1])
|
23 |
+
self.__values.append(dis)
|
24 |
+
self.__values[i + 1] += self.__values[i]
|
25 |
+
for i in range(self.__num_values):
|
26 |
+
self.__values[i] /= self.__values[-1]
|
27 |
+
|
28 |
+
def save(self, filename):
|
29 |
+
torch.save(torch.tensor(self.__values), filename)
|
30 |
+
|
31 |
+
def load(self, filename):
|
32 |
+
self.__values = torch.load(filename).tolist()
|
33 |
+
self.__num_values = len(self.__values)
|
34 |
+
|
35 |
+
def get_x(self, y):
|
36 |
+
assert y >= 0 and y <= 1
|
37 |
+
id = bisect.bisect_left(self.__values, y)
|
38 |
+
id -= 1
|
39 |
+
if id < 0:
|
40 |
+
id = 0
|
41 |
+
yl = self.__values[id]
|
42 |
+
yr = self.__values[id + 1]
|
43 |
+
xl = id * (1 / (self.__num_values - 1))
|
44 |
+
xr = (id + 1) * (1 / (self.__num_values - 1))
|
45 |
+
x = (y - yl) / (yr - yl) * (xr - xl) + xl
|
46 |
+
return x
|
47 |
+
|
48 |
+
def get_list(self, len=None):
|
49 |
+
if len is None:
|
50 |
+
len = self.__num_values
|
51 |
+
|
52 |
+
ys = torch.linspace(0, 1, len)
|
53 |
+
res = [self.get_x(y) for y in ys]
|
54 |
+
return res
|
app.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from datetime import datetime
|
8 |
+
from morph_attn import DiffMorpherPipeline
|
9 |
+
from lora_utils import train_lora
|
10 |
+
|
11 |
+
LENGTH=480
|
12 |
+
|
13 |
+
def train_lora_interface(
|
14 |
+
image,
|
15 |
+
prompt,
|
16 |
+
model_path,
|
17 |
+
output_path,
|
18 |
+
lora_steps,
|
19 |
+
lora_rank,
|
20 |
+
lora_lr,
|
21 |
+
num
|
22 |
+
):
|
23 |
+
os.makedirs(output_path, exist_ok=True)
|
24 |
+
train_lora(image, prompt, output_path, model_path,
|
25 |
+
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_{num}.ckpt", progress=gr.Progress())
|
26 |
+
return f"Train LoRA {'A' if num == 0 else 'B'} Done!"
|
27 |
+
|
28 |
+
def run_diffmorpher(
|
29 |
+
image_0,
|
30 |
+
image_1,
|
31 |
+
prompt_0,
|
32 |
+
prompt_1,
|
33 |
+
model_path,
|
34 |
+
lora_mode,
|
35 |
+
lamb,
|
36 |
+
use_adain,
|
37 |
+
use_reschedule,
|
38 |
+
num_frames,
|
39 |
+
fps,
|
40 |
+
load_lora_path_0,
|
41 |
+
load_lora_path_1,
|
42 |
+
output_path
|
43 |
+
):
|
44 |
+
run_id = datetime.now().strftime("%H%M") + "_" + datetime.now().strftime("%Y%m%d")
|
45 |
+
os.makedirs(output_path, exist_ok=True)
|
46 |
+
morpher_pipeline = DiffMorpherPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda")
|
47 |
+
if lora_mode == "Fix LoRA 0":
|
48 |
+
fix_lora = 0
|
49 |
+
elif lora_mode == "Fix LoRA 1":
|
50 |
+
fix_lora = 1
|
51 |
+
else:
|
52 |
+
fix_lora = None
|
53 |
+
if not load_lora_path_0:
|
54 |
+
load_lora_path_0 = f"{output_path}/lora_0.ckpt"
|
55 |
+
if not load_lora_path_1:
|
56 |
+
load_lora_path_1 = f"{output_path}/lora_1.ckpt"
|
57 |
+
images = morpher_pipeline(
|
58 |
+
img_0=image_0,
|
59 |
+
img_1=image_1,
|
60 |
+
prompt_0=prompt_0,
|
61 |
+
prompt_1=prompt_1,
|
62 |
+
load_lora_path_0=load_lora_path_0,
|
63 |
+
load_lora_path_1=load_lora_path_1,
|
64 |
+
lamb=lamb,
|
65 |
+
use_adain=use_adain,
|
66 |
+
use_reschedule=use_reschedule,
|
67 |
+
num_frames=num_frames,
|
68 |
+
fix_lora=fix_lora,
|
69 |
+
progress=gr.Progress()
|
70 |
+
)
|
71 |
+
video_path = f"{output_path}/{run_id}.mp4"
|
72 |
+
video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (LENGTH, LENGTH))
|
73 |
+
for image in images:
|
74 |
+
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
|
75 |
+
video.release()
|
76 |
+
cv2.destroyAllWindows()
|
77 |
+
return output_video.update(value=video_path)
|
78 |
+
|
79 |
+
def run_all(
|
80 |
+
image_0,
|
81 |
+
image_1,
|
82 |
+
prompt_0,
|
83 |
+
prompt_1,
|
84 |
+
model_path,
|
85 |
+
lora_mode,
|
86 |
+
lamb,
|
87 |
+
use_adain,
|
88 |
+
use_reschedule,
|
89 |
+
num_frames,
|
90 |
+
fps,
|
91 |
+
load_lora_path_0,
|
92 |
+
load_lora_path_1,
|
93 |
+
output_path,
|
94 |
+
lora_steps,
|
95 |
+
lora_rank,
|
96 |
+
lora_lr
|
97 |
+
):
|
98 |
+
os.makedirs(output_path, exist_ok=True)
|
99 |
+
train_lora(image_0, prompt_0, output_path, model_path,
|
100 |
+
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_0.ckpt", progress=gr.Progress())
|
101 |
+
train_lora(image_1, prompt_1, output_path, model_path,
|
102 |
+
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_1.ckpt", progress=gr.Progress())
|
103 |
+
return run_diffmorpher(
|
104 |
+
image_0,
|
105 |
+
image_1,
|
106 |
+
prompt_0,
|
107 |
+
prompt_1,
|
108 |
+
model_path,
|
109 |
+
lora_mode,
|
110 |
+
lamb,
|
111 |
+
use_adain,
|
112 |
+
use_reschedule,
|
113 |
+
num_frames,
|
114 |
+
fps,
|
115 |
+
load_lora_path_0,
|
116 |
+
load_lora_path_1,
|
117 |
+
output_path
|
118 |
+
)
|
119 |
+
|
120 |
+
with gr.Blocks() as demo:
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
gr.Markdown("""
|
124 |
+
# Official Implementation of [DiffMorpher](https://kevin-thu.github.io/DiffMorpher_page/)
|
125 |
+
""")
|
126 |
+
|
127 |
+
original_image_0, original_image_1 = gr.State(Image.open("Trump.jpg").convert("RGB").resize((512,512), Image.BILINEAR)), gr.State(Image.open("Biden.jpg").convert("RGB").resize((512,512), Image.BILINEAR))
|
128 |
+
# key_points_0, key_points_1 = gr.State([]), gr.State([])
|
129 |
+
# to_change_points = gr.State([])
|
130 |
+
|
131 |
+
with gr.Row():
|
132 |
+
with gr.Column():
|
133 |
+
input_img_0 = gr.Image(type="numpy", label="Input image A", value="Trump.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
134 |
+
prompt_0 = gr.Textbox(label="Prompt for image A", value="a photo of an American man", interactive=True)
|
135 |
+
with gr.Row():
|
136 |
+
train_lora_0_button = gr.Button("Train LoRA A")
|
137 |
+
train_lora_1_button = gr.Button("Train LoRA B")
|
138 |
+
# show_correspond_button = gr.Button("Show correspondence points")
|
139 |
+
with gr.Column():
|
140 |
+
input_img_1 = gr.Image(type="numpy", label="Input image B ", value="Biden.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
|
141 |
+
prompt_1 = gr.Textbox(label="Prompt for image B", value="a photo of an American man", interactive=True)
|
142 |
+
with gr.Row():
|
143 |
+
clear_button = gr.Button("Clear All")
|
144 |
+
run_button = gr.Button("Run w/o LoRA training")
|
145 |
+
with gr.Column():
|
146 |
+
output_video = gr.Video(format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
|
147 |
+
lora_progress_bar = gr.Textbox(label="Display LoRA training progress", interactive=False)
|
148 |
+
run_all_button = gr.Button("Run!")
|
149 |
+
# with gr.Column():
|
150 |
+
# output_video = gr.Video(label="Output video", show_label=True, height=LENGTH, width=LENGTH)
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
gr.Markdown("""
|
154 |
+
### Usage:
|
155 |
+
1. Upload two images (with correspondence) and fill out the prompts.
|
156 |
+
2. Click **"Run!"**
|
157 |
+
|
158 |
+
Or:
|
159 |
+
1. Upload two images (with correspondence) and fill out the prompts.
|
160 |
+
2. Click the **"Train LoRA A/B"** button to fit two LoRAs for two images respectively. <br>
|
161 |
+
If you have trained LoRA A or LoRA B before, you can skip the step and fill the specific LoRA path in LoRA settings. <br>
|
162 |
+
Trained LoRAs are saved to `[Output Path]/lora_0.ckpt` and `[Output Path]/lora_1.ckpt` by default.
|
163 |
+
3. You might also change the settings below.
|
164 |
+
4. Click **"Run w/o LoRA training"**
|
165 |
+
|
166 |
+
### Note:
|
167 |
+
1. To speed up the generation process, you can **ruduce the number of frames** or **turn off "Use Reschedule"** ("Use Reschedule" will double the generation time).
|
168 |
+
2. You can try the influence of different prompts. It seems that using the same prompts or aligned prompts works better.
|
169 |
+
### Have fun!
|
170 |
+
""")
|
171 |
+
|
172 |
+
with gr.Accordion(label="Algorithm Parameters"):
|
173 |
+
with gr.Tab("Basic Settings"):
|
174 |
+
with gr.Row():
|
175 |
+
# local_models_dir = 'local_pretrained_models'
|
176 |
+
# local_models_choice = \
|
177 |
+
# [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
|
178 |
+
model_path = gr.Text(value="stabilityai/stable-diffusion-2-1-base",
|
179 |
+
label="Diffusion Model Path", interactive=True
|
180 |
+
)
|
181 |
+
lamb = gr.Slider(value=0.6, minimum=0, maximum=1, step=0.1, label="Lambda for attention replacement", interactive=True)
|
182 |
+
lora_mode = gr.Dropdown(value="LoRA Interp",
|
183 |
+
label="LoRA Interp. or Fix LoRA",
|
184 |
+
choices=["LoRA Interp", "Fix LoRA A", "Fix LoRA B"],
|
185 |
+
interactive=True
|
186 |
+
)
|
187 |
+
use_adain = gr.Checkbox(value=True, label="Use AdaIN", interactive=True)
|
188 |
+
use_reschedule = gr.Checkbox(value=True, label="Use Reschedule", interactive=True)
|
189 |
+
with gr.Row():
|
190 |
+
num_frames = gr.Number(value=15, minimum=0, label="Number of Frames", precision=0, interactive=True)
|
191 |
+
fps = gr.Number(value=8, minimum=0, label="FPS (Frame rate)", precision=0, interactive=True)
|
192 |
+
output_path = gr.Text(value="./results", label="Output Path", interactive=True)
|
193 |
+
|
194 |
+
with gr.Tab("LoRA Settings"):
|
195 |
+
with gr.Row():
|
196 |
+
lora_steps = gr.Number(value=200, label="LoRA training steps", precision=0, interactive=True)
|
197 |
+
lora_lr = gr.Number(value=0.0002, label="LoRA learning rate", interactive=True)
|
198 |
+
lora_rank = gr.Number(value=16, label="LoRA rank", precision=0, interactive=True)
|
199 |
+
# save_lora_dir = gr.Text(value="./lora", label="LoRA model save path", interactive=True)
|
200 |
+
load_lora_path_0 = gr.Text(value="", label="LoRA model load path for image A", interactive=True)
|
201 |
+
load_lora_path_1 = gr.Text(value="", label="LoRA model load path for image B", interactive=True)
|
202 |
+
|
203 |
+
def store_img(img):
|
204 |
+
image = Image.fromarray(img).convert("RGB").resize((512,512), Image.BILINEAR)
|
205 |
+
# resize the input to 512x512
|
206 |
+
# image = image.resize((512,512), Image.BILINEAR)
|
207 |
+
# image = np.array(image)
|
208 |
+
# when new image is uploaded, `selected_points` should be empty
|
209 |
+
return image
|
210 |
+
input_img_0.upload(
|
211 |
+
store_img,
|
212 |
+
[input_img_0],
|
213 |
+
[original_image_0]
|
214 |
+
)
|
215 |
+
input_img_1.upload(
|
216 |
+
store_img,
|
217 |
+
[input_img_1],
|
218 |
+
[original_image_1]
|
219 |
+
)
|
220 |
+
|
221 |
+
def clear(LENGTH):
|
222 |
+
return gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
|
223 |
+
gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
|
224 |
+
None, None, None, None
|
225 |
+
clear_button.click(
|
226 |
+
clear,
|
227 |
+
[gr.Number(value=LENGTH, visible=False, precision=0)],
|
228 |
+
[input_img_0, input_img_1, original_image_0, original_image_1, prompt_0, prompt_1]
|
229 |
+
)
|
230 |
+
|
231 |
+
train_lora_0_button.click(
|
232 |
+
train_lora_interface,
|
233 |
+
[
|
234 |
+
original_image_0,
|
235 |
+
prompt_0,
|
236 |
+
model_path,
|
237 |
+
output_path,
|
238 |
+
lora_steps,
|
239 |
+
lora_rank,
|
240 |
+
lora_lr,
|
241 |
+
gr.Number(value=0, visible=False, precision=0)
|
242 |
+
],
|
243 |
+
[lora_progress_bar]
|
244 |
+
)
|
245 |
+
|
246 |
+
train_lora_1_button.click(
|
247 |
+
train_lora_interface,
|
248 |
+
[
|
249 |
+
original_image_1,
|
250 |
+
prompt_1,
|
251 |
+
model_path,
|
252 |
+
output_path,
|
253 |
+
lora_steps,
|
254 |
+
lora_rank,
|
255 |
+
lora_lr,
|
256 |
+
gr.Number(value=1, visible=False, precision=0)
|
257 |
+
],
|
258 |
+
[lora_progress_bar]
|
259 |
+
)
|
260 |
+
|
261 |
+
run_button.click(
|
262 |
+
run_diffmorpher,
|
263 |
+
[
|
264 |
+
original_image_0,
|
265 |
+
original_image_1,
|
266 |
+
prompt_0,
|
267 |
+
prompt_1,
|
268 |
+
model_path,
|
269 |
+
lora_mode,
|
270 |
+
lamb,
|
271 |
+
use_adain,
|
272 |
+
use_reschedule,
|
273 |
+
num_frames,
|
274 |
+
fps,
|
275 |
+
load_lora_path_0,
|
276 |
+
load_lora_path_1,
|
277 |
+
output_path
|
278 |
+
],
|
279 |
+
[output_video]
|
280 |
+
)
|
281 |
+
|
282 |
+
run_all_button.click(
|
283 |
+
run_all,
|
284 |
+
[
|
285 |
+
original_image_0,
|
286 |
+
original_image_1,
|
287 |
+
prompt_0,
|
288 |
+
prompt_1,
|
289 |
+
model_path,
|
290 |
+
lora_mode,
|
291 |
+
lamb,
|
292 |
+
use_adain,
|
293 |
+
use_reschedule,
|
294 |
+
num_frames,
|
295 |
+
fps,
|
296 |
+
load_lora_path_0,
|
297 |
+
load_lora_path_1,
|
298 |
+
output_path,
|
299 |
+
lora_steps,
|
300 |
+
lora_rank,
|
301 |
+
lora_lr
|
302 |
+
],
|
303 |
+
[output_video]
|
304 |
+
)
|
305 |
+
|
306 |
+
demo.queue().launch(debug=True)
|
lora_utils.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from timeit import default_timer as timer
|
2 |
+
from datetime import timedelta
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
from einops import rearrange
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torchvision import transforms
|
10 |
+
import transformers
|
11 |
+
from accelerate import Accelerator
|
12 |
+
from accelerate.utils import set_seed
|
13 |
+
from packaging import version
|
14 |
+
from PIL import Image
|
15 |
+
import tqdm
|
16 |
+
|
17 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
18 |
+
|
19 |
+
import diffusers
|
20 |
+
from diffusers import (
|
21 |
+
AutoencoderKL,
|
22 |
+
DDPMScheduler,
|
23 |
+
DiffusionPipeline,
|
24 |
+
DPMSolverMultistepScheduler,
|
25 |
+
StableDiffusionPipeline,
|
26 |
+
UNet2DConditionModel,
|
27 |
+
)
|
28 |
+
from diffusers.loaders import AttnProcsLayers, LoraLoaderMixin
|
29 |
+
from diffusers.models.attention_processor import (
|
30 |
+
AttnAddedKVProcessor,
|
31 |
+
AttnAddedKVProcessor2_0,
|
32 |
+
LoRAAttnAddedKVProcessor,
|
33 |
+
LoRAAttnProcessor,
|
34 |
+
LoRAAttnProcessor2_0,
|
35 |
+
SlicedAttnAddedKVProcessor,
|
36 |
+
)
|
37 |
+
from diffusers.optimization import get_scheduler
|
38 |
+
from diffusers.utils import check_min_version
|
39 |
+
from diffusers.utils.import_utils import is_xformers_available
|
40 |
+
|
41 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
42 |
+
check_min_version("0.17.0")
|
43 |
+
|
44 |
+
|
45 |
+
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
|
46 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
47 |
+
pretrained_model_name_or_path,
|
48 |
+
subfolder="text_encoder",
|
49 |
+
revision=revision,
|
50 |
+
)
|
51 |
+
model_class = text_encoder_config.architectures[0]
|
52 |
+
|
53 |
+
if model_class == "CLIPTextModel":
|
54 |
+
from transformers import CLIPTextModel
|
55 |
+
|
56 |
+
return CLIPTextModel
|
57 |
+
elif model_class == "RobertaSeriesModelWithTransformation":
|
58 |
+
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation
|
59 |
+
|
60 |
+
return RobertaSeriesModelWithTransformation
|
61 |
+
elif model_class == "T5EncoderModel":
|
62 |
+
from transformers import T5EncoderModel
|
63 |
+
|
64 |
+
return T5EncoderModel
|
65 |
+
else:
|
66 |
+
raise ValueError(f"{model_class} is not supported.")
|
67 |
+
|
68 |
+
def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
|
69 |
+
if tokenizer_max_length is not None:
|
70 |
+
max_length = tokenizer_max_length
|
71 |
+
else:
|
72 |
+
max_length = tokenizer.model_max_length
|
73 |
+
|
74 |
+
text_inputs = tokenizer(
|
75 |
+
prompt,
|
76 |
+
truncation=True,
|
77 |
+
padding="max_length",
|
78 |
+
max_length=max_length,
|
79 |
+
return_tensors="pt",
|
80 |
+
)
|
81 |
+
|
82 |
+
return text_inputs
|
83 |
+
|
84 |
+
def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=False):
|
85 |
+
text_input_ids = input_ids.to(text_encoder.device)
|
86 |
+
|
87 |
+
if text_encoder_use_attention_mask:
|
88 |
+
attention_mask = attention_mask.to(text_encoder.device)
|
89 |
+
else:
|
90 |
+
attention_mask = None
|
91 |
+
|
92 |
+
prompt_embeds = text_encoder(
|
93 |
+
text_input_ids,
|
94 |
+
attention_mask=attention_mask,
|
95 |
+
)
|
96 |
+
prompt_embeds = prompt_embeds[0]
|
97 |
+
|
98 |
+
return prompt_embeds
|
99 |
+
|
100 |
+
# model_path: path of the model
|
101 |
+
# image: input image, have not been pre-processed
|
102 |
+
# save_lora_dir: the path to save the lora
|
103 |
+
# prompt: the user input prompt
|
104 |
+
# lora_steps: number of lora training step
|
105 |
+
# lora_lr: learning rate of lora training
|
106 |
+
# lora_rank: the rank of lora
|
107 |
+
def train_lora(image, prompt, save_lora_dir, model_path=None, tokenizer=None, text_encoder=None, vae=None, unet=None, noise_scheduler=None, lora_steps=200, lora_lr=2e-4, lora_rank=16, weight_name=None, safe_serialization=False, progress=tqdm):
|
108 |
+
# initialize accelerator
|
109 |
+
accelerator = Accelerator(
|
110 |
+
gradient_accumulation_steps=1,
|
111 |
+
# mixed_precision='fp16'
|
112 |
+
)
|
113 |
+
set_seed(0)
|
114 |
+
|
115 |
+
# Load the tokenizer
|
116 |
+
if tokenizer is None:
|
117 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
118 |
+
model_path,
|
119 |
+
subfolder="tokenizer",
|
120 |
+
revision=None,
|
121 |
+
use_fast=False,
|
122 |
+
)
|
123 |
+
# initialize the model
|
124 |
+
if noise_scheduler is None:
|
125 |
+
noise_scheduler = DDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
|
126 |
+
if text_encoder is None:
|
127 |
+
text_encoder_cls = import_model_class_from_model_name_or_path(model_path, revision=None)
|
128 |
+
text_encoder = text_encoder_cls.from_pretrained(
|
129 |
+
model_path, subfolder="text_encoder", revision=None
|
130 |
+
)
|
131 |
+
if vae is None:
|
132 |
+
vae = AutoencoderKL.from_pretrained(
|
133 |
+
model_path, subfolder="vae", revision=None
|
134 |
+
)
|
135 |
+
if unet is None:
|
136 |
+
unet = UNet2DConditionModel.from_pretrained(
|
137 |
+
model_path, subfolder="unet", revision=None
|
138 |
+
)
|
139 |
+
|
140 |
+
# set device and dtype
|
141 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
142 |
+
|
143 |
+
vae.requires_grad_(False)
|
144 |
+
text_encoder.requires_grad_(False)
|
145 |
+
unet.requires_grad_(False)
|
146 |
+
|
147 |
+
unet.to(device)
|
148 |
+
vae.to(device)
|
149 |
+
text_encoder.to(device)
|
150 |
+
|
151 |
+
# initialize UNet LoRA
|
152 |
+
unet_lora_attn_procs = {}
|
153 |
+
for name, attn_processor in unet.attn_processors.items():
|
154 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
155 |
+
if name.startswith("mid_block"):
|
156 |
+
hidden_size = unet.config.block_out_channels[-1]
|
157 |
+
elif name.startswith("up_blocks"):
|
158 |
+
block_id = int(name[len("up_blocks.")])
|
159 |
+
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
160 |
+
elif name.startswith("down_blocks"):
|
161 |
+
block_id = int(name[len("down_blocks.")])
|
162 |
+
hidden_size = unet.config.block_out_channels[block_id]
|
163 |
+
else:
|
164 |
+
raise NotImplementedError("name must start with up_blocks, mid_blocks, or down_blocks")
|
165 |
+
|
166 |
+
if isinstance(attn_processor, (AttnAddedKVProcessor, SlicedAttnAddedKVProcessor, AttnAddedKVProcessor2_0)):
|
167 |
+
lora_attn_processor_class = LoRAAttnAddedKVProcessor
|
168 |
+
else:
|
169 |
+
lora_attn_processor_class = (
|
170 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
171 |
+
)
|
172 |
+
unet_lora_attn_procs[name] = lora_attn_processor_class(
|
173 |
+
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, rank=lora_rank
|
174 |
+
)
|
175 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
176 |
+
unet_lora_layers = AttnProcsLayers(unet.attn_processors)
|
177 |
+
|
178 |
+
# Optimizer creation
|
179 |
+
params_to_optimize = (unet_lora_layers.parameters())
|
180 |
+
optimizer = torch.optim.AdamW(
|
181 |
+
params_to_optimize,
|
182 |
+
lr=lora_lr,
|
183 |
+
betas=(0.9, 0.999),
|
184 |
+
weight_decay=1e-2,
|
185 |
+
eps=1e-08,
|
186 |
+
)
|
187 |
+
|
188 |
+
lr_scheduler = get_scheduler(
|
189 |
+
"constant",
|
190 |
+
optimizer=optimizer,
|
191 |
+
num_warmup_steps=0,
|
192 |
+
num_training_steps=lora_steps,
|
193 |
+
num_cycles=1,
|
194 |
+
power=1.0,
|
195 |
+
)
|
196 |
+
|
197 |
+
# prepare accelerator
|
198 |
+
unet_lora_layers = accelerator.prepare_model(unet_lora_layers)
|
199 |
+
optimizer = accelerator.prepare_optimizer(optimizer)
|
200 |
+
lr_scheduler = accelerator.prepare_scheduler(lr_scheduler)
|
201 |
+
|
202 |
+
# initialize text embeddings
|
203 |
+
with torch.no_grad():
|
204 |
+
text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None)
|
205 |
+
text_embedding = encode_prompt(
|
206 |
+
text_encoder,
|
207 |
+
text_inputs.input_ids,
|
208 |
+
text_inputs.attention_mask,
|
209 |
+
text_encoder_use_attention_mask=False
|
210 |
+
)
|
211 |
+
|
212 |
+
if type(image) == np.ndarray:
|
213 |
+
image = Image.fromarray(image)
|
214 |
+
|
215 |
+
# initialize latent distribution
|
216 |
+
image_transforms = transforms.Compose(
|
217 |
+
[
|
218 |
+
transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
|
219 |
+
# transforms.RandomCrop(512),
|
220 |
+
transforms.ToTensor(),
|
221 |
+
transforms.Normalize([0.5], [0.5]),
|
222 |
+
]
|
223 |
+
)
|
224 |
+
|
225 |
+
image = image_transforms(image).to(device)
|
226 |
+
image = image.unsqueeze(dim=0)
|
227 |
+
|
228 |
+
latents_dist = vae.encode(image).latent_dist
|
229 |
+
for _ in progress.tqdm(range(lora_steps), desc="Training LoRA..."):
|
230 |
+
unet.train()
|
231 |
+
model_input = latents_dist.sample() * vae.config.scaling_factor
|
232 |
+
# Sample noise that we'll add to the latents
|
233 |
+
noise = torch.randn_like(model_input)
|
234 |
+
bsz, channels, height, width = model_input.shape
|
235 |
+
# Sample a random timestep for each image
|
236 |
+
timesteps = torch.randint(
|
237 |
+
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
|
238 |
+
)
|
239 |
+
timesteps = timesteps.long()
|
240 |
+
|
241 |
+
# Add noise to the model input according to the noise magnitude at each timestep
|
242 |
+
# (this is the forward diffusion process)
|
243 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
244 |
+
|
245 |
+
# Predict the noise residual
|
246 |
+
model_pred = unet(noisy_model_input, timesteps, text_embedding).sample
|
247 |
+
|
248 |
+
# Get the target for loss depending on the prediction type
|
249 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
250 |
+
target = noise
|
251 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
252 |
+
target = noise_scheduler.get_velocity(model_input, noise, timesteps)
|
253 |
+
else:
|
254 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
255 |
+
|
256 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
257 |
+
accelerator.backward(loss)
|
258 |
+
optimizer.step()
|
259 |
+
lr_scheduler.step()
|
260 |
+
optimizer.zero_grad()
|
261 |
+
|
262 |
+
# save the trained lora
|
263 |
+
# unet = unet.to(torch.float32)
|
264 |
+
# vae = vae.to(torch.float32)
|
265 |
+
# text_encoder = text_encoder.to(torch.float32)
|
266 |
+
|
267 |
+
# unwrap_model is used to remove all special modules added when doing distributed training
|
268 |
+
# so here, there is no need to call unwrap_model
|
269 |
+
# unet_lora_layers = accelerator.unwrap_model(unet_lora_layers)
|
270 |
+
LoraLoaderMixin.save_lora_weights(
|
271 |
+
save_directory=save_lora_dir,
|
272 |
+
unet_lora_layers=unet_lora_layers,
|
273 |
+
text_encoder_lora_layers=None,
|
274 |
+
weight_name=weight_name,
|
275 |
+
safe_serialization=safe_serialization
|
276 |
+
)
|
277 |
+
|
278 |
+
def load_lora(unet, lora_0, lora_1, alpha):
|
279 |
+
lora = {}
|
280 |
+
for key in lora_0:
|
281 |
+
lora[key] = (1 - alpha) * lora_0[key] + alpha * lora_1[key]
|
282 |
+
unet.load_attn_procs(lora)
|
283 |
+
return unet
|
284 |
+
|
285 |
+
# import safetensors
|
286 |
+
# unet = UNet2DConditionModel.from_pretrained(
|
287 |
+
# "stabilityai/stable-diffusion-2-1-base", subfolder="unet", revision=None
|
288 |
+
# )
|
289 |
+
# lora = safetensors.torch.load_file("../models/lora/majicmixRealistic_betterV2V25.safetensors", device="cuda")
|
290 |
+
# unet = safetensors.torch.load_file("../stabilityai/stable-diffusion-1-5/v1-5-pruned-emaonly.safetensors", device="cuda")
|
291 |
+
# with open("lora.txt", "w") as f:
|
292 |
+
# for key in lora:
|
293 |
+
# f.write(f"{key} {lora[key].shape}\n")
|
294 |
+
# with open("unet.txt", "w") as f:
|
295 |
+
# for key in unet:
|
296 |
+
# f.write(f"{key} {unet[key].shape}\n")
|
297 |
+
# unet.load_attn_procs(lora)
|
298 |
+
|
299 |
+
# lora_path = "models/lora"
|
300 |
+
# image_path_1 = "input/sculpture.jpg"
|
301 |
+
# # image_path_0 = "input/realdog0.jpg"
|
302 |
+
|
303 |
+
# prompt = "a photo of a sculpture"
|
304 |
+
# train_lora(Image.open(image_path_1), prompt, lora_path, "stabilityai/stable-diffusion-1-5", weight_name="sculpture_v15.safetensors", safe_serialization=True)
|
305 |
+
# train_lora(image_path_0, prompt, "stabilityai/stable-diffusion-2-1-base", lora_path, weight_name="realdog0.ckpt")
|
306 |
+
# realdog1_lora = torch.load(os.path.join(lora_path, "realdog1.ckpt"))
|
307 |
+
# realdog0_lora = torch.load(os.path.join(lora_path, "realdog0.ckpt"))
|
308 |
+
|
309 |
+
# pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32)
|
310 |
+
# pipe.to("cuda")
|
311 |
+
|
312 |
+
# for t in torch.linspace(0, 1, 10):
|
313 |
+
# lora = {}
|
314 |
+
# for key in realdog0_lora:
|
315 |
+
# lora[key] = (1 - t) * realdog1_lora[key] + t * realdog0_lora[key]
|
316 |
+
# pipe.unet.load_attn_procs(lora)
|
317 |
+
# image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
|
318 |
+
# image.save(f"test/lora_interp/{t}.jpg")
|
morph_attn.py
ADDED
@@ -0,0 +1,827 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
3 |
+
from diffusers.models.attention_processor import AttnProcessor
|
4 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
5 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import tqdm
|
9 |
+
import numpy as np
|
10 |
+
import safetensors
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision import transforms
|
13 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
14 |
+
from lora_utils import train_lora, load_lora
|
15 |
+
from diffusers import StableDiffusionPipeline
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
from alpha_scheduler import AlphaScheduler
|
18 |
+
|
19 |
+
parser = ArgumentParser()
|
20 |
+
parser.add_argument(
|
21 |
+
'--image_path_0', type=str, default='',
|
22 |
+
help='Path of the image to be processed (default: %(default)s)')
|
23 |
+
parser.add_argument(
|
24 |
+
'--prompt_0', type=str, default='',
|
25 |
+
help='Prompt of the image (default: %(default)s)')
|
26 |
+
parser.add_argument(
|
27 |
+
'--image_path_1', type=str, default='',
|
28 |
+
help='Path of the 2nd image to be processed, used in "morphing" mode (default: %(default)s)')
|
29 |
+
parser.add_argument(
|
30 |
+
'--prompt_1', type=str, default='',
|
31 |
+
help='Prompt of the 2nd image, used in "morphing" mode (default: %(default)s)')
|
32 |
+
parser.add_argument(
|
33 |
+
'--output_path', type=str, default='',
|
34 |
+
help='Path of the output image (default: %(default)s)'
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
'--num_frames', type=int, default=50,
|
38 |
+
help='Number of frames to generate (default: %(default)s)'
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
'--duration', type=int, default=50,
|
42 |
+
help='Duration of each frame (default: %(default)s)'
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
'--use_lora', action='store_true',
|
46 |
+
help='Use LORA to generate images (default: False)'
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
'--guidance_scale', type=float, default=1.,
|
50 |
+
help='CFG guidace (default: %(default)s)'
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
'--attn_beta', type=float, default=None,
|
54 |
+
)
|
55 |
+
parser.add_argument(
|
56 |
+
'-reschedule', action='store_true',
|
57 |
+
)
|
58 |
+
parser.add_argument(
|
59 |
+
'--lamd', type=float, default=0.6,
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
'--use_adain', action='store_true'
|
63 |
+
)
|
64 |
+
|
65 |
+
args = parser.parse_args()
|
66 |
+
# name = args.output_path.split('/')[-1]
|
67 |
+
# attn_beta = args.attn_beta
|
68 |
+
# num_frames = args.num_frames
|
69 |
+
# use_alpha_scheduler = args.reschedule
|
70 |
+
# attn_step = 50 * args.lamd
|
71 |
+
|
72 |
+
|
73 |
+
def calc_mean_std(feat, eps=1e-5):
|
74 |
+
# eps is a small value added to the variance to avoid divide-by-zero.
|
75 |
+
size = feat.size()
|
76 |
+
|
77 |
+
N, C = size[:2]
|
78 |
+
feat_var = feat.view(N, C, -1).var(dim=2) + eps
|
79 |
+
if len(size) == 3:
|
80 |
+
feat_std = feat_var.sqrt().view(N, C, 1)
|
81 |
+
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1)
|
82 |
+
else:
|
83 |
+
feat_std = feat_var.sqrt().view(N, C, 1, 1)
|
84 |
+
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
|
85 |
+
return feat_mean, feat_std
|
86 |
+
|
87 |
+
|
88 |
+
def get_img(img, resolution=512):
|
89 |
+
norm_mean = [0.5, 0.5, 0.5]
|
90 |
+
norm_std = [0.5, 0.5, 0.5]
|
91 |
+
transform = transforms.Compose([
|
92 |
+
transforms.Resize((resolution, resolution)),
|
93 |
+
transforms.ToTensor(),
|
94 |
+
transforms.Normalize(norm_mean, norm_std)
|
95 |
+
])
|
96 |
+
img = transform(img)
|
97 |
+
return img.unsqueeze(0)
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def slerp(p0, p1, fract_mixing: float, adain=True):
|
101 |
+
r""" Copied from lunarring/latentblending
|
102 |
+
Helper function to correctly mix two random variables using spherical interpolation.
|
103 |
+
The function will always cast up to float64 for sake of extra 4.
|
104 |
+
Args:
|
105 |
+
p0:
|
106 |
+
First tensor for interpolation
|
107 |
+
p1:
|
108 |
+
Second tensor for interpolation
|
109 |
+
fract_mixing: float
|
110 |
+
Mixing coefficient of interval [0, 1].
|
111 |
+
0 will return in p0
|
112 |
+
1 will return in p1
|
113 |
+
0.x will return a mix between both preserving angular velocity.
|
114 |
+
"""
|
115 |
+
if p0.dtype == torch.float16:
|
116 |
+
recast_to = 'fp16'
|
117 |
+
else:
|
118 |
+
recast_to = 'fp32'
|
119 |
+
|
120 |
+
p0 = p0.double()
|
121 |
+
p1 = p1.double()
|
122 |
+
|
123 |
+
if adain:
|
124 |
+
mean1, std1 = calc_mean_std(p0)
|
125 |
+
mean2, std2 = calc_mean_std(p1)
|
126 |
+
mean = mean1 * (1 - fract_mixing) + mean2 * fract_mixing
|
127 |
+
std = std1 * (1 - fract_mixing) + std2 * fract_mixing
|
128 |
+
|
129 |
+
norm = torch.linalg.norm(p0) * torch.linalg.norm(p1)
|
130 |
+
epsilon = 1e-7
|
131 |
+
dot = torch.sum(p0 * p1) / norm
|
132 |
+
dot = dot.clamp(-1+epsilon, 1-epsilon)
|
133 |
+
|
134 |
+
theta_0 = torch.arccos(dot)
|
135 |
+
sin_theta_0 = torch.sin(theta_0)
|
136 |
+
theta_t = theta_0 * fract_mixing
|
137 |
+
s0 = torch.sin(theta_0 - theta_t) / sin_theta_0
|
138 |
+
s1 = torch.sin(theta_t) / sin_theta_0
|
139 |
+
interp = p0*s0 + p1*s1
|
140 |
+
|
141 |
+
if adain:
|
142 |
+
interp = F.instance_norm(interp) * std + mean
|
143 |
+
|
144 |
+
if recast_to == 'fp16':
|
145 |
+
interp = interp.half()
|
146 |
+
elif recast_to == 'fp32':
|
147 |
+
interp = interp.float()
|
148 |
+
|
149 |
+
return interp
|
150 |
+
|
151 |
+
|
152 |
+
def do_replace_attn(key: str):
|
153 |
+
# return key.startswith('up_blocks.2') or key.startswith('up_blocks.3')
|
154 |
+
return key.startswith('up')
|
155 |
+
|
156 |
+
|
157 |
+
class StoreProcessor():
|
158 |
+
def __init__(self, original_processor, value_dict, name):
|
159 |
+
self.original_processor = original_processor
|
160 |
+
self.value_dict = value_dict
|
161 |
+
self.name = name
|
162 |
+
self.value_dict[self.name] = dict()
|
163 |
+
self.id = 0
|
164 |
+
|
165 |
+
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
166 |
+
# Is self attention
|
167 |
+
if encoder_hidden_states is None:
|
168 |
+
self.value_dict[self.name][self.id] = hidden_states.detach()
|
169 |
+
self.id += 1
|
170 |
+
res = self.original_processor(attn, hidden_states, *args,
|
171 |
+
encoder_hidden_states=encoder_hidden_states,
|
172 |
+
attention_mask=attention_mask,
|
173 |
+
**kwargs)
|
174 |
+
|
175 |
+
return res
|
176 |
+
|
177 |
+
|
178 |
+
class LoadProcessor():
|
179 |
+
def __init__(self, original_processor, name, img0_dict, img1_dict, alpha, beta=0, lamb=0.6):
|
180 |
+
super().__init__()
|
181 |
+
self.original_processor = original_processor
|
182 |
+
self.name = name
|
183 |
+
self.img0_dict = img0_dict
|
184 |
+
self.img1_dict = img1_dict
|
185 |
+
self.alpha = alpha
|
186 |
+
self.beta = beta
|
187 |
+
self.lamb = lamb
|
188 |
+
self.id = 0
|
189 |
+
|
190 |
+
def parent_call(
|
191 |
+
self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0
|
192 |
+
):
|
193 |
+
residual = hidden_states
|
194 |
+
|
195 |
+
if attn.spatial_norm is not None:
|
196 |
+
hidden_states = attn.spatial_norm(hidden_states)
|
197 |
+
|
198 |
+
input_ndim = hidden_states.ndim
|
199 |
+
|
200 |
+
if input_ndim == 4:
|
201 |
+
batch_size, channel, height, width = hidden_states.shape
|
202 |
+
hidden_states = hidden_states.view(
|
203 |
+
batch_size, channel, height * width).transpose(1, 2)
|
204 |
+
|
205 |
+
batch_size, sequence_length, _ = (
|
206 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
207 |
+
)
|
208 |
+
attention_mask = attn.prepare_attention_mask(
|
209 |
+
attention_mask, sequence_length, batch_size)
|
210 |
+
|
211 |
+
if attn.group_norm is not None:
|
212 |
+
hidden_states = attn.group_norm(
|
213 |
+
hidden_states.transpose(1, 2)).transpose(1, 2)
|
214 |
+
|
215 |
+
query = attn.to_q(hidden_states) + scale * \
|
216 |
+
self.original_processor.to_q_lora(hidden_states)
|
217 |
+
query = attn.head_to_batch_dim(query)
|
218 |
+
|
219 |
+
if encoder_hidden_states is None:
|
220 |
+
encoder_hidden_states = hidden_states
|
221 |
+
elif attn.norm_cross:
|
222 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(
|
223 |
+
encoder_hidden_states)
|
224 |
+
|
225 |
+
key = attn.to_k(encoder_hidden_states) + scale * \
|
226 |
+
self.original_processor.to_k_lora(encoder_hidden_states)
|
227 |
+
value = attn.to_v(encoder_hidden_states) + scale * \
|
228 |
+
self.original_processor.to_v_lora(encoder_hidden_states)
|
229 |
+
|
230 |
+
key = attn.head_to_batch_dim(key)
|
231 |
+
value = attn.head_to_batch_dim(value)
|
232 |
+
|
233 |
+
attention_probs = attn.get_attention_scores(
|
234 |
+
query, key, attention_mask)
|
235 |
+
hidden_states = torch.bmm(attention_probs, value)
|
236 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
237 |
+
|
238 |
+
# linear proj
|
239 |
+
hidden_states = attn.to_out[0](
|
240 |
+
hidden_states) + scale * self.original_processor.to_out_lora(hidden_states)
|
241 |
+
# dropout
|
242 |
+
hidden_states = attn.to_out[1](hidden_states)
|
243 |
+
|
244 |
+
if input_ndim == 4:
|
245 |
+
hidden_states = hidden_states.transpose(
|
246 |
+
-1, -2).reshape(batch_size, channel, height, width)
|
247 |
+
|
248 |
+
if attn.residual_connection:
|
249 |
+
hidden_states = hidden_states + residual
|
250 |
+
|
251 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
252 |
+
|
253 |
+
return hidden_states
|
254 |
+
|
255 |
+
def __call__(self, attn, hidden_states, *args, encoder_hidden_states=None, attention_mask=None, **kwargs):
|
256 |
+
# Is self attention
|
257 |
+
if encoder_hidden_states is None:
|
258 |
+
# hardcode timestep
|
259 |
+
if self.id < 50 * self.lamb:
|
260 |
+
map0 = self.img0_dict[self.name][self.id]
|
261 |
+
map1 = self.img1_dict[self.name][self.id]
|
262 |
+
cross_map = self.beta * hidden_states + \
|
263 |
+
(1 - self.beta) * ((1 - self.alpha) * map0 + self.alpha * map1)
|
264 |
+
# cross_map = self.beta * hidden_states + \
|
265 |
+
# (1 - self.beta) * slerp(map0, map1, self.alpha)
|
266 |
+
# cross_map = slerp(slerp(map0, map1, self.alpha),
|
267 |
+
# hidden_states, self.beta)
|
268 |
+
# cross_map = hidden_states
|
269 |
+
# cross_map = torch.cat(
|
270 |
+
# ((1 - self.alpha) * map0, self.alpha * map1), dim=1)
|
271 |
+
|
272 |
+
# res = self.original_processor(attn, hidden_states, *args,
|
273 |
+
# encoder_hidden_states=cross_map,
|
274 |
+
# attention_mask=attention_mask,
|
275 |
+
# temb=temb, **kwargs)
|
276 |
+
res = self.parent_call(attn, hidden_states, *args,
|
277 |
+
encoder_hidden_states=cross_map,
|
278 |
+
attention_mask=attention_mask,
|
279 |
+
**kwargs)
|
280 |
+
else:
|
281 |
+
res = self.original_processor(attn, hidden_states, *args,
|
282 |
+
encoder_hidden_states=encoder_hidden_states,
|
283 |
+
attention_mask=attention_mask,
|
284 |
+
**kwargs)
|
285 |
+
|
286 |
+
self.id += 1
|
287 |
+
# if self.id == len(self.img0_dict[self.name]):
|
288 |
+
if self.id == len(self.img0_dict[self.name]):
|
289 |
+
self.id = 0
|
290 |
+
else:
|
291 |
+
res = self.original_processor(attn, hidden_states, *args,
|
292 |
+
encoder_hidden_states=encoder_hidden_states,
|
293 |
+
attention_mask=attention_mask,
|
294 |
+
**kwargs)
|
295 |
+
|
296 |
+
return res
|
297 |
+
|
298 |
+
|
299 |
+
class DiffMorpherPipeline(StableDiffusionPipeline):
|
300 |
+
|
301 |
+
def __init__(self,
|
302 |
+
vae: AutoencoderKL,
|
303 |
+
text_encoder: CLIPTextModel,
|
304 |
+
tokenizer: CLIPTokenizer,
|
305 |
+
unet: UNet2DConditionModel,
|
306 |
+
scheduler: KarrasDiffusionSchedulers,
|
307 |
+
safety_checker: StableDiffusionSafetyChecker,
|
308 |
+
feature_extractor: CLIPImageProcessor,
|
309 |
+
requires_safety_checker: bool = True,
|
310 |
+
):
|
311 |
+
super().__init__(vae, text_encoder, tokenizer, unet, scheduler,
|
312 |
+
safety_checker, feature_extractor, requires_safety_checker)
|
313 |
+
self.img0_dict = dict()
|
314 |
+
self.img1_dict = dict()
|
315 |
+
|
316 |
+
def inv_step(
|
317 |
+
self,
|
318 |
+
model_output: torch.FloatTensor,
|
319 |
+
timestep: int,
|
320 |
+
x: torch.FloatTensor,
|
321 |
+
eta=0.,
|
322 |
+
verbose=False
|
323 |
+
):
|
324 |
+
"""
|
325 |
+
Inverse sampling for DDIM Inversion
|
326 |
+
"""
|
327 |
+
if verbose:
|
328 |
+
print("timestep: ", timestep)
|
329 |
+
next_step = timestep
|
330 |
+
timestep = min(timestep - self.scheduler.config.num_train_timesteps //
|
331 |
+
self.scheduler.num_inference_steps, 999)
|
332 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[
|
333 |
+
timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
|
334 |
+
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
|
335 |
+
beta_prod_t = 1 - alpha_prod_t
|
336 |
+
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
|
337 |
+
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
|
338 |
+
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
|
339 |
+
return x_next, pred_x0
|
340 |
+
|
341 |
+
@torch.no_grad()
|
342 |
+
def invert(
|
343 |
+
self,
|
344 |
+
image: torch.Tensor,
|
345 |
+
prompt,
|
346 |
+
num_inference_steps=50,
|
347 |
+
num_actual_inference_steps=None,
|
348 |
+
guidance_scale=1.,
|
349 |
+
eta=0.0,
|
350 |
+
**kwds):
|
351 |
+
"""
|
352 |
+
invert a real image into noise map with determinisc DDIM inversion
|
353 |
+
"""
|
354 |
+
DEVICE = torch.device(
|
355 |
+
"cuda") if torch.cuda.is_available() else torch.device("cpu")
|
356 |
+
batch_size = image.shape[0]
|
357 |
+
if isinstance(prompt, list):
|
358 |
+
if batch_size == 1:
|
359 |
+
image = image.expand(len(prompt), -1, -1, -1)
|
360 |
+
elif isinstance(prompt, str):
|
361 |
+
if batch_size > 1:
|
362 |
+
prompt = [prompt] * batch_size
|
363 |
+
|
364 |
+
# text embeddings
|
365 |
+
text_input = self.tokenizer(
|
366 |
+
prompt,
|
367 |
+
padding="max_length",
|
368 |
+
max_length=77,
|
369 |
+
return_tensors="pt"
|
370 |
+
)
|
371 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
|
372 |
+
print("input text embeddings :", text_embeddings.shape)
|
373 |
+
# define initial latents
|
374 |
+
latents = self.image2latent(image)
|
375 |
+
|
376 |
+
# unconditional embedding for classifier free guidance
|
377 |
+
if guidance_scale > 1.:
|
378 |
+
max_length = text_input.input_ids.shape[-1]
|
379 |
+
unconditional_input = self.tokenizer(
|
380 |
+
[""] * batch_size,
|
381 |
+
padding="max_length",
|
382 |
+
max_length=77,
|
383 |
+
return_tensors="pt"
|
384 |
+
)
|
385 |
+
unconditional_embeddings = self.text_encoder(
|
386 |
+
unconditional_input.input_ids.to(DEVICE))[0]
|
387 |
+
text_embeddings = torch.cat(
|
388 |
+
[unconditional_embeddings, text_embeddings], dim=0)
|
389 |
+
|
390 |
+
print("latents shape: ", latents.shape)
|
391 |
+
# interative sampling
|
392 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
393 |
+
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
|
394 |
+
# print("attributes: ", self.scheduler.__dict__)
|
395 |
+
latents_list = [latents]
|
396 |
+
pred_x0_list = [latents]
|
397 |
+
for i, t in enumerate(tqdm.tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
|
398 |
+
if num_actual_inference_steps is not None and i >= num_actual_inference_steps:
|
399 |
+
continue
|
400 |
+
|
401 |
+
if guidance_scale > 1.:
|
402 |
+
model_inputs = torch.cat([latents] * 2)
|
403 |
+
else:
|
404 |
+
model_inputs = latents
|
405 |
+
|
406 |
+
# predict the noise
|
407 |
+
noise_pred = self.unet(
|
408 |
+
model_inputs, t, encoder_hidden_states=text_embeddings).sample
|
409 |
+
if guidance_scale > 1.:
|
410 |
+
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
|
411 |
+
noise_pred = noise_pred_uncon + guidance_scale * \
|
412 |
+
(noise_pred_con - noise_pred_uncon)
|
413 |
+
# compute the previous noise sample x_t-1 -> x_t
|
414 |
+
latents, pred_x0 = self.inv_step(noise_pred, t, latents)
|
415 |
+
latents_list.append(latents)
|
416 |
+
pred_x0_list.append(pred_x0)
|
417 |
+
|
418 |
+
return latents
|
419 |
+
|
420 |
+
@torch.no_grad()
|
421 |
+
def ddim_inversion(self, latent, cond):
|
422 |
+
timesteps = reversed(self.scheduler.timesteps)
|
423 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
424 |
+
for i, t in enumerate(tqdm.tqdm(timesteps, desc="DDIM inversion")):
|
425 |
+
cond_batch = cond.repeat(latent.shape[0], 1, 1)
|
426 |
+
|
427 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
428 |
+
alpha_prod_t_prev = (
|
429 |
+
self.scheduler.alphas_cumprod[timesteps[i - 1]]
|
430 |
+
if i > 0 else self.scheduler.final_alpha_cumprod
|
431 |
+
)
|
432 |
+
|
433 |
+
mu = alpha_prod_t ** 0.5
|
434 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
435 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
436 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
437 |
+
|
438 |
+
eps = self.unet(
|
439 |
+
latent, t, encoder_hidden_states=cond_batch).sample
|
440 |
+
|
441 |
+
pred_x0 = (latent - sigma_prev * eps) / mu_prev
|
442 |
+
latent = mu * pred_x0 + sigma * eps
|
443 |
+
# if save_latents:
|
444 |
+
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
|
445 |
+
# torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
|
446 |
+
return latent
|
447 |
+
|
448 |
+
def step(
|
449 |
+
self,
|
450 |
+
model_output: torch.FloatTensor,
|
451 |
+
timestep: int,
|
452 |
+
x: torch.FloatTensor,
|
453 |
+
):
|
454 |
+
"""
|
455 |
+
predict the sample of the next step in the denoise process.
|
456 |
+
"""
|
457 |
+
prev_timestep = timestep - \
|
458 |
+
self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
459 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
460 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
|
461 |
+
prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod
|
462 |
+
beta_prod_t = 1 - alpha_prod_t
|
463 |
+
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
|
464 |
+
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output
|
465 |
+
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir
|
466 |
+
return x_prev, pred_x0
|
467 |
+
|
468 |
+
@torch.no_grad()
|
469 |
+
def image2latent(self, image):
|
470 |
+
DEVICE = torch.device(
|
471 |
+
"cuda") if torch.cuda.is_available() else torch.device("cpu")
|
472 |
+
if type(image) is Image:
|
473 |
+
image = np.array(image)
|
474 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
475 |
+
image = image.permute(2, 0, 1).unsqueeze(0)
|
476 |
+
# input image density range [-1, 1]
|
477 |
+
latents = self.vae.encode(image.to(DEVICE))['latent_dist'].mean
|
478 |
+
latents = latents * 0.18215
|
479 |
+
return latents
|
480 |
+
|
481 |
+
@torch.no_grad()
|
482 |
+
def latent2image(self, latents, return_type='np'):
|
483 |
+
latents = 1 / 0.18215 * latents.detach()
|
484 |
+
image = self.vae.decode(latents)['sample']
|
485 |
+
if return_type == 'np':
|
486 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
487 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
488 |
+
image = (image * 255).astype(np.uint8)
|
489 |
+
elif return_type == "pt":
|
490 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
491 |
+
|
492 |
+
return image
|
493 |
+
|
494 |
+
def latent2image_grad(self, latents):
|
495 |
+
latents = 1 / 0.18215 * latents
|
496 |
+
image = self.vae.decode(latents)['sample']
|
497 |
+
|
498 |
+
return image # range [-1, 1]
|
499 |
+
|
500 |
+
@torch.no_grad()
|
501 |
+
def cal_latent(self, num_inference_steps, guidance_scale, unconditioning, img_noise_0, img_noise_1, text_embeddings_0, text_embeddings_1, lora_0, lora_1, alpha, use_lora, fix_lora=None):
|
502 |
+
# latents = torch.cos(alpha * torch.pi / 2) * img_noise_0 + \
|
503 |
+
# torch.sin(alpha * torch.pi / 2) * img_noise_1
|
504 |
+
# latents = (1 - alpha) * img_noise_0 + alpha * img_noise_1
|
505 |
+
# latents = latents / ((1 - alpha) ** 2 + alpha ** 2)
|
506 |
+
latents = slerp(img_noise_0, img_noise_1, alpha, self.use_adain)
|
507 |
+
text_embeddings = (1 - alpha) * text_embeddings_0 + \
|
508 |
+
alpha * text_embeddings_1
|
509 |
+
|
510 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
511 |
+
if use_lora:
|
512 |
+
if fix_lora is not None:
|
513 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, fix_lora)
|
514 |
+
else:
|
515 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, alpha)
|
516 |
+
|
517 |
+
for i, t in enumerate(tqdm.tqdm(self.scheduler.timesteps, desc=f"DDIM Sampler, alpha={alpha}")):
|
518 |
+
|
519 |
+
if guidance_scale > 1.:
|
520 |
+
model_inputs = torch.cat([latents] * 2)
|
521 |
+
else:
|
522 |
+
model_inputs = latents
|
523 |
+
if unconditioning is not None and isinstance(unconditioning, list):
|
524 |
+
_, text_embeddings = text_embeddings.chunk(2)
|
525 |
+
text_embeddings = torch.cat(
|
526 |
+
[unconditioning[i].expand(*text_embeddings.shape), text_embeddings])
|
527 |
+
# predict the noise
|
528 |
+
noise_pred = self.unet(
|
529 |
+
model_inputs, t, encoder_hidden_states=text_embeddings).sample
|
530 |
+
if guidance_scale > 1.0:
|
531 |
+
noise_pred_uncon, noise_pred_con = noise_pred.chunk(
|
532 |
+
2, dim=0)
|
533 |
+
noise_pred = noise_pred_uncon + guidance_scale * \
|
534 |
+
(noise_pred_con - noise_pred_uncon)
|
535 |
+
# compute the previous noise sample x_t -> x_t-1
|
536 |
+
# YUJUN: right now, the only difference between step here and step in scheduler
|
537 |
+
# is that scheduler version would clamp pred_x0 between [-1,1]
|
538 |
+
# don't know if that's gonna have huge impact
|
539 |
+
latents = self.scheduler.step(
|
540 |
+
noise_pred, t, latents, return_dict=False)[0]
|
541 |
+
return latents
|
542 |
+
|
543 |
+
@torch.no_grad()
|
544 |
+
def get_text_embeddings(self, prompt, guidance_scale, neg_prompt, batch_size):
|
545 |
+
DEVICE = torch.device(
|
546 |
+
"cuda") if torch.cuda.is_available() else torch.device("cpu")
|
547 |
+
# text embeddings
|
548 |
+
text_input = self.tokenizer(
|
549 |
+
prompt,
|
550 |
+
padding="max_length",
|
551 |
+
max_length=77,
|
552 |
+
return_tensors="pt"
|
553 |
+
)
|
554 |
+
text_embeddings = self.text_encoder(text_input.input_ids.cuda())[0]
|
555 |
+
|
556 |
+
if guidance_scale > 1.:
|
557 |
+
if neg_prompt:
|
558 |
+
uc_text = neg_prompt
|
559 |
+
else:
|
560 |
+
uc_text = ""
|
561 |
+
unconditional_input = self.tokenizer(
|
562 |
+
[uc_text] * batch_size,
|
563 |
+
padding="max_length",
|
564 |
+
max_length=77,
|
565 |
+
return_tensors="pt"
|
566 |
+
)
|
567 |
+
unconditional_embeddings = self.text_encoder(
|
568 |
+
unconditional_input.input_ids.to(DEVICE))[0]
|
569 |
+
text_embeddings = torch.cat(
|
570 |
+
[unconditional_embeddings, text_embeddings], dim=0)
|
571 |
+
|
572 |
+
return text_embeddings
|
573 |
+
|
574 |
+
def __call__(
|
575 |
+
self,
|
576 |
+
img_0=None,
|
577 |
+
img_1=None,
|
578 |
+
img_path_0=None,
|
579 |
+
img_path_1=None,
|
580 |
+
prompt_0="",
|
581 |
+
prompt_1="",
|
582 |
+
save_lora_dir="./lora",
|
583 |
+
load_lora_path_0=None,
|
584 |
+
load_lora_path_1=None,
|
585 |
+
lora_steps=200,
|
586 |
+
lora_lr=2e-4,
|
587 |
+
lora_rank=16,
|
588 |
+
batch_size=1,
|
589 |
+
height=512,
|
590 |
+
width=512,
|
591 |
+
num_inference_steps=50,
|
592 |
+
num_actual_inference_steps=None,
|
593 |
+
guidance_scale=1,
|
594 |
+
attn_beta=0,
|
595 |
+
lamb=0.6,
|
596 |
+
use_lora = True,
|
597 |
+
use_adain = True,
|
598 |
+
use_reschedule = True,
|
599 |
+
output_path = "./results",
|
600 |
+
num_frames=50,
|
601 |
+
fix_lora=None,
|
602 |
+
progress=tqdm,
|
603 |
+
unconditioning=None,
|
604 |
+
neg_prompt=None,
|
605 |
+
**kwds):
|
606 |
+
|
607 |
+
# if isinstance(prompt, list):
|
608 |
+
# batch_size = len(prompt)
|
609 |
+
# elif isinstance(prompt, str):
|
610 |
+
# if batch_size > 1:
|
611 |
+
# prompt = [prompt] * batch_size
|
612 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
613 |
+
self.use_lora = use_lora
|
614 |
+
self.use_adain = use_adain
|
615 |
+
self.use_reschedule = use_reschedule
|
616 |
+
self.output_path = output_path
|
617 |
+
|
618 |
+
if img_0 is None:
|
619 |
+
img_0 = Image.open(img_path_0).convert("RGB")
|
620 |
+
# else:
|
621 |
+
# img_0 = Image.fromarray(img_0).convert("RGB")
|
622 |
+
|
623 |
+
if img_1 is None:
|
624 |
+
img_1 = Image.open(img_path_1).convert("RGB")
|
625 |
+
# else:
|
626 |
+
# img_1 = Image.fromarray(img_1).convert("RGB")
|
627 |
+
if self.use_lora:
|
628 |
+
print("Loading lora...")
|
629 |
+
if not load_lora_path_0:
|
630 |
+
|
631 |
+
weight_name = f"{output_path.split('/')[-1]}_lora_0.ckpt"
|
632 |
+
load_lora_path_0 = save_lora_dir + "/" + weight_name
|
633 |
+
if not os.path.exists(load_lora_path_0):
|
634 |
+
train_lora(img_0, prompt_0, save_lora_dir, None, self.tokenizer, self.text_encoder,
|
635 |
+
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
|
636 |
+
print(f"Load from {load_lora_path_0}.")
|
637 |
+
if load_lora_path_0.endswith(".safetensors"):
|
638 |
+
lora_0 = safetensors.torch.load_file(
|
639 |
+
load_lora_path_0, device="cpu")
|
640 |
+
else:
|
641 |
+
lora_0 = torch.load(load_lora_path_0, map_location="cpu")
|
642 |
+
|
643 |
+
if not load_lora_path_1:
|
644 |
+
weight_name = f"{output_path.split('/')[-1]}_lora_1.ckpt"
|
645 |
+
load_lora_path_1 = save_lora_dir + "/" + weight_name
|
646 |
+
if not os.path.exists(load_lora_path_1):
|
647 |
+
train_lora(img_1, prompt_1, save_lora_dir, None, self.tokenizer, self.text_encoder,
|
648 |
+
self.vae, self.unet, self.scheduler, lora_steps, lora_lr, lora_rank, weight_name=weight_name)
|
649 |
+
print(f"Load from {load_lora_path_1}.")
|
650 |
+
if load_lora_path_1.endswith(".safetensors"):
|
651 |
+
lora_1 = safetensors.torch.load_file(
|
652 |
+
load_lora_path_1, device="cpu")
|
653 |
+
else:
|
654 |
+
lora_1 = torch.load(load_lora_path_1, map_location="cpu")
|
655 |
+
|
656 |
+
text_embeddings_0 = self.get_text_embeddings(
|
657 |
+
prompt_0, guidance_scale, neg_prompt, batch_size)
|
658 |
+
text_embeddings_1 = self.get_text_embeddings(
|
659 |
+
prompt_1, guidance_scale, neg_prompt, batch_size)
|
660 |
+
img_0 = get_img(img_0)
|
661 |
+
img_1 = get_img(img_1)
|
662 |
+
if self.use_lora:
|
663 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, 0)
|
664 |
+
img_noise_0 = self.ddim_inversion(
|
665 |
+
self.image2latent(img_0), text_embeddings_0)
|
666 |
+
if self.use_lora:
|
667 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, 1)
|
668 |
+
img_noise_1 = self.ddim_inversion(
|
669 |
+
self.image2latent(img_1), text_embeddings_1)
|
670 |
+
|
671 |
+
print("latents shape: ", img_noise_0.shape)
|
672 |
+
|
673 |
+
def morph(alpha_list, progress, desc, save=False):
|
674 |
+
images = []
|
675 |
+
if attn_beta is not None:
|
676 |
+
|
677 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, 0 if fix_lora is None else fix_lora)
|
678 |
+
attn_processor_dict = {}
|
679 |
+
for k in self.unet.attn_processors.keys():
|
680 |
+
if do_replace_attn(k):
|
681 |
+
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
|
682 |
+
self.img0_dict, k)
|
683 |
+
else:
|
684 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
685 |
+
self.unet.set_attn_processor(attn_processor_dict)
|
686 |
+
|
687 |
+
latents = self.cal_latent(
|
688 |
+
num_inference_steps,
|
689 |
+
guidance_scale,
|
690 |
+
unconditioning,
|
691 |
+
img_noise_0,
|
692 |
+
img_noise_1,
|
693 |
+
text_embeddings_0,
|
694 |
+
text_embeddings_1,
|
695 |
+
lora_0,
|
696 |
+
lora_1,
|
697 |
+
alpha_list[0],
|
698 |
+
False,
|
699 |
+
fix_lora
|
700 |
+
)
|
701 |
+
first_image = self.latent2image(latents)
|
702 |
+
first_image = Image.fromarray(first_image)
|
703 |
+
if save:
|
704 |
+
first_image.save(f"{self.output_path}/{0:02d}.png")
|
705 |
+
|
706 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, 1 if fix_lora is None else fix_lora)
|
707 |
+
attn_processor_dict = {}
|
708 |
+
for k in self.unet.attn_processors.keys():
|
709 |
+
if do_replace_attn(k):
|
710 |
+
attn_processor_dict[k] = StoreProcessor(self.unet.attn_processors[k],
|
711 |
+
self.img1_dict, k)
|
712 |
+
else:
|
713 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
714 |
+
|
715 |
+
self.unet.set_attn_processor(attn_processor_dict)
|
716 |
+
|
717 |
+
latents = self.cal_latent(
|
718 |
+
num_inference_steps,
|
719 |
+
guidance_scale,
|
720 |
+
unconditioning,
|
721 |
+
img_noise_0,
|
722 |
+
img_noise_1,
|
723 |
+
text_embeddings_0,
|
724 |
+
text_embeddings_1,
|
725 |
+
lora_0,
|
726 |
+
lora_1,
|
727 |
+
alpha_list[-1],
|
728 |
+
False,
|
729 |
+
fix_lora
|
730 |
+
)
|
731 |
+
last_image = self.latent2image(latents)
|
732 |
+
last_image = Image.fromarray(last_image)
|
733 |
+
if save:
|
734 |
+
last_image.save(
|
735 |
+
f"{self.output_path}/{num_frames - 1:02d}.png")
|
736 |
+
|
737 |
+
for i in progress.tqdm(range(1, num_frames - 1), desc=desc):
|
738 |
+
alpha = alpha_list[i]
|
739 |
+
self.unet = load_lora(self.unet, lora_0, lora_1, alpha if fix_lora is None else fix_lora)
|
740 |
+
attn_processor_dict = {}
|
741 |
+
for k in self.unet.attn_processors.keys():
|
742 |
+
if do_replace_attn(k):
|
743 |
+
attn_processor_dict[k] = LoadProcessor(
|
744 |
+
self.unet.attn_processors[k], k, self.img0_dict, self.img1_dict, alpha, attn_beta, lamb)
|
745 |
+
else:
|
746 |
+
attn_processor_dict[k] = self.unet.attn_processors[k]
|
747 |
+
|
748 |
+
self.unet.set_attn_processor(attn_processor_dict)
|
749 |
+
|
750 |
+
latents = self.cal_latent(
|
751 |
+
num_inference_steps,
|
752 |
+
guidance_scale,
|
753 |
+
unconditioning,
|
754 |
+
img_noise_0,
|
755 |
+
img_noise_1,
|
756 |
+
text_embeddings_0,
|
757 |
+
text_embeddings_1,
|
758 |
+
lora_0,
|
759 |
+
lora_1,
|
760 |
+
alpha_list[i],
|
761 |
+
False,
|
762 |
+
fix_lora
|
763 |
+
)
|
764 |
+
image = self.latent2image(latents)
|
765 |
+
image = Image.fromarray(image)
|
766 |
+
if save:
|
767 |
+
image.save(f"{self.output_path}/{i:02d}.png")
|
768 |
+
images.append(image)
|
769 |
+
|
770 |
+
images = [first_image] + images + [last_image]
|
771 |
+
|
772 |
+
else:
|
773 |
+
for k, alpha in enumerate(alpha_list):
|
774 |
+
|
775 |
+
latents = self.cal_latent(
|
776 |
+
num_inference_steps,
|
777 |
+
guidance_scale,
|
778 |
+
unconditioning,
|
779 |
+
img_noise_0,
|
780 |
+
img_noise_1,
|
781 |
+
text_embeddings_0,
|
782 |
+
text_embeddings_1,
|
783 |
+
lora_0,
|
784 |
+
lora_1,
|
785 |
+
alpha_list[k],
|
786 |
+
self.use_lora,
|
787 |
+
fix_lora
|
788 |
+
)
|
789 |
+
image = self.latent2image(latents)
|
790 |
+
image = Image.fromarray(image)
|
791 |
+
if save:
|
792 |
+
image.save(f"{self.output_path}/{k:02d}.png")
|
793 |
+
images.append(image)
|
794 |
+
|
795 |
+
return images
|
796 |
+
|
797 |
+
with torch.no_grad():
|
798 |
+
if self.use_reschedule:
|
799 |
+
alpha_scheduler = AlphaScheduler()
|
800 |
+
alpha_list = list(torch.linspace(0, 1, num_frames))
|
801 |
+
images_pt = morph(alpha_list, progress, "Sampling...", False)
|
802 |
+
images_pt = [transforms.ToTensor()(img).unsqueeze(0)
|
803 |
+
for img in images_pt]
|
804 |
+
alpha_scheduler.from_imgs(images_pt)
|
805 |
+
alpha_list = alpha_scheduler.get_list()
|
806 |
+
print(alpha_list)
|
807 |
+
images = morph(alpha_list, progress, "Reschedule...", False)
|
808 |
+
else:
|
809 |
+
alpha_list = list(torch.linspace(0, 1, num_frames))
|
810 |
+
print(alpha_list)
|
811 |
+
images = morph(alpha_list, progress, "Sampling...", False)
|
812 |
+
|
813 |
+
return images
|
814 |
+
|
815 |
+
|
816 |
+
# os.makedirs(self.output_path, exist_ok=True)
|
817 |
+
# pipeline = DiffMorpherPipeline.from_pretrained(
|
818 |
+
# "./stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float32)
|
819 |
+
# pipeline.to("cuda")
|
820 |
+
# images = pipeline(
|
821 |
+
# args.image_path_0,
|
822 |
+
# args.image_path_1,
|
823 |
+
# args.prompt_0,
|
824 |
+
# args.prompt_1
|
825 |
+
# )
|
826 |
+
# images[0].save(f"{self.output_path}/output.gif", save_all=True,
|
827 |
+
# append_images=images[1:], duration=args.duration, loop=0)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.23.0
|
2 |
+
diffusers==0.17.1
|
3 |
+
einops==0.7.0
|
4 |
+
# gradio==4.7.1
|
5 |
+
numpy==1.26.1
|
6 |
+
opencv_python==4.5.5.64
|
7 |
+
packaging==23.2
|
8 |
+
Pillow==10.1.0
|
9 |
+
safetensors==0.4.0
|
10 |
+
torch
|
11 |
+
torchvision
|
12 |
+
tqdm==4.65.0
|
13 |
+
transformers==4.34.1
|
14 |
+
lpips
|