|
import torch |
|
import torchaudio |
|
from speechbrain.pretrained import SpectralMaskEnhancement |
|
import gradio as gr |
|
|
|
enhance_model = SpectralMaskEnhancement.from_hparams( |
|
source="speechbrain/metricgan-plus-voicebank", |
|
savedir="pretrained_models/metricgan-plus-voicebank", |
|
) |
|
|
|
def speechbrain(aud): |
|
|
|
noisy = enhance_model.load_audio( |
|
aud.name |
|
).unsqueeze(0) |
|
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.])) |
|
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000) |
|
return 'enhanced.wav' |
|
|
|
inputs = gr.inputs.Audio(label="Input Audio", type="file") |
|
outputs = gr.outputs.Audio(label="Output Audio", type="file") |
|
title = "Speechbrain Speech Enhancement" |
|
description = "Gradio demo for Speech enhancement with SpeechBrain. To use it, simply upload your audio, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.03538' target='_blank'>MetricGAN+: An Improved Version of MetricGAN for Speech Enhancement</a> | <a href='https://github.com/speechbrain/speechbrain' target='_blank'>Github Repo</a></p>" |
|
examples = [ |
|
['samples_audio_samples_example_fr.wav'] |
|
] |
|
gr.Interface(speechbrain, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |