Spaces:
Runtime error
Runtime error
File size: 8,808 Bytes
9d0a4ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import os
import pdb
import time
import json
import pprint
import random
import importlib
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import sys
sys.path.append('/Users/kevin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import DatasetHL, prepare_batch_inputs_hl, start_end_collate_hl
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown, save_json, save_jsonl
from utils.model_utils import count_parameters
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def eval_epoch(model, train_val_dataset, opt): #, nms_thresh, device):
model.eval()
scores = []
train_val_dataset.set_state('val')
val_loader = DataLoader(
train_val_dataset,
collate_fn=start_end_collate_hl,
batch_size=opt.eval_bsz,
num_workers=opt.num_workers,
shuffle=False,
pin_memory=opt.pin_memory
)
with torch.no_grad():
for data in val_loader:
model_inputs, targets = prepare_batch_inputs_hl(data)
outputs = model(**model_inputs)
# pred_cls = outputs['pred_logits'].squeeze(-1)
# pred_cls = outputs['saliency_scores']
# pred_cls = outputs['saliency_scores'] + outputs['pred_logits'].squeeze(-1)
# pdb.set_trace()
if opt.f_loss_coef == 0:
pred_cls = outputs['saliency_scores']
elif opt.s_loss_intra_coef == 0:
pred_cls = outputs['pred_logits'].squeeze(-1)
else:
if opt.eval_mode == 'add':
pred_cls = outputs['saliency_scores'] + outputs['pred_logits'].squeeze(-1)
else:
pred_cls = outputs['pred_logits'].squeeze(-1)
pred_cls = pred_cls.detach().cpu()
scores.append(pred_cls)
map = round(train_val_dataset.evaluate(scores, save_dir='./plot')['mAP'] * 100, 4)
return map
def train_epoch(model, criterion, train_val_dataset, optimizer, opt, epoch_i, tb_writer):
logger.info(f"[Epoch {epoch_i+1}]")
model.train()
criterion.train()
train_val_dataset.set_state('train')
train_loader = DataLoader(
train_val_dataset,
collate_fn=start_end_collate_hl,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=opt.pin_memory
)
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
num_training_examples = len(train_loader)
timer_dataloading = time.time()
for batch_idx, batch in enumerate(train_loader):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_inputs, targets = prepare_batch_inputs_hl(batch)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
outputs = model(**model_inputs)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
loss_dict["loss_overall"] = float(losses)
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timer_dataloading = time.time()
if opt.debug and batch_idx == 3:
break
# print/add logs
tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
for k, v in loss_meters.items():
tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)
to_write = opt.train_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i+1,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
with open(opt.train_log_filepath, "a") as f:
f.write(to_write)
logger.info("Epoch time stats:")
for name, meter in time_meters.items():
d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
logger.info(f"{name} ==> {d}")
# train in single domain.
def train(model, criterion, optimizer, lr_scheduler, train_val_dataset, opt):
# if opt.device.type == "cuda":
# logger.info("CUDA enabled.")
# model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
prev_best_score = 0.
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_init else 0
else:
start_epoch = opt.start_epoch
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
train_epoch(model, criterion, train_val_dataset, optimizer, opt, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
scores = eval_epoch(model, train_val_dataset, opt)
tb_writer.add_scalar(f"Eval/HL-{opt.dset_name}-{train_val_dataset.domain}-mAP", float(scores), epoch_i+1)
if prev_best_score < scores:
prev_best_score = scores
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_{train_val_dataset.domain}_best.ckpt"))
tb_writer.close()
return prev_best_score
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
from main.config_hl import TVSUM_SPLITS, YOUTUBE_SPLITS
if opt.dset_name == "tvsum":
domain_splits = TVSUM_SPLITS.keys()
if opt.dset_name == "youtube":
domain_splits = YOUTUBE_SPLITS.keys()
scores = {}
if opt.lr_warmup > 0:
# total_steps = opt.n_epoch * len(train_dataset) // opt.bsz
total_steps = opt.n_epoch
warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps)
opt.lr_warmup = [warmup_steps, total_steps]
domain_splits = domain_splits if not opt.domain_name else [opt.domain_name]
for domain in domain_splits:
dataset_config = dict(
dset_name=opt.dset_name,
domain=domain,
data_path=opt.train_path,
v_feat_types=opt.v_feat_types,
v_feat_dirs=opt.v_feat_dirs,
t_feat_dir=opt.t_feat_dir,
use_tef=True
)
dataloader = DatasetHL(**dataset_config)
model, criterion, optimizer, lr_scheduler = setup_model(opt)
count_parameters(model)
logger.info(f"Start Training {domain}")
best_score = train(model, criterion, optimizer, lr_scheduler, dataloader, opt)
scores[domain] = best_score
scores['AVG'] = sum(scores.values()) / len(scores)
# save the final results.
save_metrics_path = os.path.join(opt.results_dir, f"best_{opt.dset_name}_{opt.eval_split_name}_preds_metrics.json")
save_json(scores, save_metrics_path, save_pretty=True, sort_keys=False)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text(f"HL-{opt.dset_name}", dict_to_markdown(scores, max_str_len=None))
tb_writer.add_scalar(f"Eval/HL-{opt.dset_name}-avg-mAP-key", float(scores['AVG']), 1)
tb_writer.close()
# return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug
print(opt.dset_name)
print(scores)
return
if __name__ == '__main__':
start_training()
results = logger.info("\n\n\nFINISHED TRAINING!!!")
|