File size: 13,673 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import pdb
import time
import json
import pprint
import random
import importlib
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict

import h5py
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

import sys
sys.path.append('/Users/kevin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset_qfvs import DatasetQFVS, prepare_batch_inputs_qfvs, start_end_collate_qfvs
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown, save_json, save_jsonl, load_json, load_pickle, l2_normalize_np_array
from utils.model_utils import count_parameters
from eval.qfvs import calculate_semantic_matching, load_videos_tag

import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
                    datefmt="%Y-%m-%d %H:%M:%S",
                    level=logging.INFO)

def eval_epoch(model, config, opt):
    model.eval()
    f1_sum = 0; p_sum = 0; r_sum = 0

    assert len(config['test_videos']) == 1
    video_id = config['test_videos'][0]
    embedding = load_pickle(f"./data/qfvs/txt_clip/{config['txt_feature']}.pkl")

    feat_type = config['vid_feature']
    feat = h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5', 'r')
    features = torch.from_numpy(feat['features'][()])
    seg_len = torch.from_numpy(feat['seg_len'][()])
    # seg_len = torch.tensor(feat['seg_len'][()]).unsqueeze(0).cuda()
  
    # dim = features.shape[-1]
    # ctx_l = seg_len.sum().cpu()

    # dim = features.shape[-1]
    # ctx_l =   features.shape[1]
    # seg_len = torch.ones(ctx_l)
    # features = features.reshape(-1, dim)[:ctx_l]

    # tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
    # tef_ed = tef_st + 1.0 / ctx_l
    # tef = torch.stack([tef_st, tef_ed], dim=1).cuda() # (Lv, 2)
    # features = torch.cat([features, tef], dim=1)  # (Lv, Dv+2)

    transfer = {"Cupglass": "Glass",
                "Musicalinstrument": "Instrument",
                "Petsanimal": "Animal"}

    for _,_,files in os.walk("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)):
        evaluation_num=len(files)

        mask_GT = torch.zeros(config["max_segment_num"], config["max_frame_num"], dtype=torch.bool).cuda()
        for j in range(len(seg_len)):
            for k in range(seg_len[j]):
                mask_GT[j][k] = 1

        for file in files:
            summaries_GT=[]
            with open("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)+"/"+file,"r") as f:
                for line in f.readlines():
                    summaries_GT.append(int(line.strip()))

            concept1, concept2 = file.split('_')[0:2]

            ##############
            if concept1 in transfer:
                concept1 = transfer[concept1]
            if concept2 in transfer:
                concept2 = transfer[concept2]
            concept1 = embedding[concept1]
            concept2 = embedding[concept2]

            concept1 = l2_normalize_np_array(concept1)
            concept2 = l2_normalize_np_array(concept2)

            data = {
            'features':features,
            'seg_len': seg_len,
            'tokens_pad1':torch.from_numpy(concept1),
            'tokens_pad2':torch.from_numpy(concept2),
            'mask_GT': mask_GT
            }

            input1, input2, input_oracle, mask = prepare_batch_inputs_qfvs(start_end_collate_qfvs([data]), config, eval=True)

            summaries_GT = [x - 1 for x in summaries_GT]
            video_shots_tag = load_videos_tag(mat_path="./eval/Tags.mat")

            if opt.f_loss_coef == 0:
                output_type = 'saliency_scores'
            elif opt.s_loss_intra_coef == 0:
                output_type = 'pred_logits'
            else:
                if config['qfvs_score_ensemble'] > 0:
                    output_type = ['pred_logits', 'saliency_scores']
                else:
                    output_type = 'pred_logits'

            with torch.no_grad():
                if not isinstance(output_type, list):
                    score1 = model(**input1)[output_type].squeeze()
                    score1 = score1.masked_select(mask_GT)

                    score2 = model(**input2)[output_type].squeeze()
                    score2 = score2.masked_select(mask_GT)

                    score = model(**input_oracle)[output_type].squeeze()
                    score = score.masked_select(mask_GT)
                else:
                    score1, score2, score = torch.zeros((int(mask.sum().item()))).cuda(),  torch.zeros((int(mask.sum().item()))).cuda(),  torch.zeros((int(mask.sum().item()))).cuda()
                    for output_t in output_type:
                        score1 += model(**input1)[output_t].squeeze().masked_select(mask_GT)
                        score2 += model(**input2)[output_t].squeeze().masked_select(mask_GT)
                        score += model(**input_oracle)[output_t].squeeze().masked_select(mask_GT)

                if config['qfvs_score_gather'] > 0:
                    score = score + score1 + score2
                else:
                    score = score

                # since video4 features dim is greater than video_shots_tag.
                score = score[:min(score.shape[0], video_shots_tag[video_id-1].shape[0])]
                _, top_index = score.topk(int(score.shape[0] * config["top_percent"]))

                p, r, f1 = calculate_semantic_matching(list(top_index.cpu().numpy()), summaries_GT, video_shots_tag, video_id=video_id-1)
                f1_sum+=f1;  r_sum+=r; p_sum+=p

    return {'F': round(100* f1_sum/evaluation_num,2) ,
            'R': round(100* r_sum/evaluation_num,2) ,
            'P': round(100* p_sum/evaluation_num,2) }

def idx2time(idx):
    sec1, sec2 = idx*5, (idx+1)*5

    h1 = sec1 // 3600
    m1 = (sec1 - h1*3600) // 60
    s1 = sec1 % 60

    h2 = sec2 // 3600
    m2 = (sec2 - h2*3600) // 60
    s2 = sec2 % 60
    print(h1,m1,s1,'\t', h2,m2,s2)

def train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer):
    model.train()
    criterion.train()

    # init meters
    time_meters = defaultdict(AverageMeter)
    loss_meters = defaultdict(AverageMeter)

    timer_dataloading = time.time()
    loss_total = 0

    for batch_idx, batch in enumerate(tqdm(train_loader)):
        time_meters["dataloading_time"].update(time.time() - timer_dataloading)
        timer_start = time.time()
        model_input1, model_input2, model_input_oracle, \
        model_gt1, model_gt2, model_gt_oracle, \
        mask_GT = prepare_batch_inputs_qfvs(batch, config)
        time_meters["prepare_inputs_time"].update(time.time() - timer_start)

        timer_start = time.time()
        output1 = model(**model_input1)
        output2 = model(**model_input2)
        output_oracle = model(**model_input_oracle)

        loss_dict = {}
        loss_dict1 = criterion(output1, model_gt1, mask_GT)
        loss_dict2 = criterion(output2, model_gt2, mask_GT)
        loss_dict3 = criterion(output_oracle, model_gt_oracle, mask_GT)

        weight_dict = criterion.weight_dict
        if config['qfvs_loss_gather'] > 0:
            for k in loss_dict1.keys():
                loss_dict[k] = loss_dict1[k] + loss_dict2[k] + loss_dict3[k]
        else:
            loss_dict = loss_dict3

        losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
        loss_total += losses.item()

        time_meters["model_forward_time"].update(time.time() - timer_start)
        timer_start = time.time()
        optimizer.zero_grad()
        losses.backward()
        if opt.grad_clip > 0:
            nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
        optimizer.step()
        time_meters["model_backward_time"].update(time.time() - timer_start)

        timer_dataloading = time.time()
    return round(loss_total  / len(train_loader), 2)

# train in single domain.
def train(model, criterion, optimizer, lr_scheduler, train_loader, opt, config):
    # if opt.device.type == "cuda":
        # logger.info("CUDA enabled.")
        # model.to(opt.device)

    tb_writer = SummaryWriter(opt.tensorboard_log_dir)
    tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
    opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
    opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"

    prev_best_score = {'Fscore':0, 'Precision':0, 'Recall':0}
    if opt.start_epoch is None:
        start_epoch = -1 if opt.eval_init else 0
    else:
        start_epoch = opt.start_epoch

    val_score = eval_epoch(model, config, opt)
    tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), 0)
    logger.info(f"[Epoch {0}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
                f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
                f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")
    for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
        if epoch_i > -1:
            loss_epoch = train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer)
            lr_scheduler.step()
        eval_epoch_interval = opt.eval_epoch
        if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
            with torch.no_grad():
                val_score = eval_epoch(model, config, opt)
                tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), epoch_i+1)
            logger.info(f"[Epoch {epoch_i + 1}, Loss {loss_epoch}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
                        f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
                        f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")

            if prev_best_score['Fscore'] < val_score['F']:
                prev_best_score['Fscore'] = val_score['F']
                prev_best_score['Precision'] = val_score['P']
                prev_best_score['Recall'] = val_score['R']

                checkpoint = {
                    "model": model.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "epoch": epoch_i,
                    "opt": opt
                }
                torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_V{config['test_videos'][0]}_best.ckpt"))
    tb_writer.close()
    return prev_best_score

def update_config(opt, config):
    # for key in ["max_segment_num", "max_frame_num", "top_percent", 
                # "qfvs_vid_feature", "qfvs_txt_feature", "qfvs_dense_shot",
                # "qfvs_score_ensemble", "qfvs_score_gather", "qfvs_loss_gather"]:
    config["max_segment_num"] = opt.max_segment_num
    config["max_frame_num"] = opt.max_frame_num
    config["top_percent"] = opt.top_percent
    config["vid_feature"] = opt.qfvs_vid_feature
    config["txt_feature"] = opt.qfvs_txt_feature
    config["qfvs_dense_shot"] = opt.qfvs_dense_shot
    config["qfvs_score_ensemble"] = opt.qfvs_score_ensemble
    config["qfvs_score_gather"] = opt.qfvs_score_gather
    config["qfvs_loss_gather"] = opt.qfvs_loss_gather
    return config

def start_training():
    logger.info("Setup config, data and model...")
    opt = BaseOptions().parse()
    set_seed(opt.seed)

    # config = load_json("./main/config_qfvs.json")
    config = {}
    config = update_config(opt, config)

    tb_writer = SummaryWriter(opt.tensorboard_log_dir)

    # key -> test video; value -> training videos.
    qfvs_split = {
                    1: [2, 3, 4],
                  2: [1, 3, 4],
                  3: [1, 2, 4],
                  4: [1, 2, 3]
                  }

    scores_videos = {}
    for test_id, splits in qfvs_split.items():
        logger.info(f"Start Training {opt.dset_name}: {test_id}")
        config['train_videos'] = qfvs_split[test_id]
        config['test_videos'] = [test_id]
        train_dataset = DatasetQFVS(config)
        train_loader = DataLoader(train_dataset, batch_size=opt.bsz, collate_fn=start_end_collate_qfvs, shuffle=True, num_workers=opt.num_workers)

        model, criterion, optimizer, lr_scheduler = setup_model(opt)
        count_parameters(model)
        best_score = train(model, criterion, optimizer, lr_scheduler, train_loader, opt,  config)
        scores_videos['V'+str(test_id)] = best_score

    # save the final results.
    avg_fscore = sum([v['Fscore'] for k, v in scores_videos.items()]) / len(scores_videos)
    avg_precision = sum([v['Precision'] for k, v in scores_videos.items()]) / len(scores_videos)
    avg_recall = sum([v['Recall'] for k, v in scores_videos.items()]) / len(scores_videos)
    scores_videos['avg'] = {'Fscore':avg_fscore, 'Precision':avg_precision, 'Recall':avg_recall}

    save_metrics_path = os.path.join(opt.results_dir, f"best_{opt.dset_name}_{opt.eval_split_name}_preds_metrics.json")
    save_json( scores_videos, save_metrics_path, save_pretty=True, sort_keys=False)

    tb_writer.add_scalar(f"Eval/QFVS-avg-fscore", round(avg_fscore, 2), 1)
    tb_writer.add_text(f"Eval/QFVS-{opt.dset_name}", dict_to_markdown(scores_videos, max_str_len=None))
    tb_writer.close()

    print(scores_videos)
    return

if __name__ == '__main__':
    start_training()
    results = logger.info("\n\n\nFINISHED TRAINING!!!")