File size: 6,663 Bytes
9d0a4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
from .cpd_nonlin import cpd_nonlin

def cpd_auto(K, ncp, vmax, desc_rate=1, **kwargs):
    """Main interface

    Detect change points automatically selecting their number
        K       - kernel between each pair of frames in video
        ncp     - maximum ncp
        vmax    - special parameter
    Optional arguments:
        lmin     - minimum segment length
        lmax     - maximum segment length
        desc_rate - rate of descriptor sampling (vmax always corresponds to 1x)

    Note:
        - cps are always calculated in subsampled coordinates irrespective to
            desc_rate
        - lmin and m should be in agreement
    ---
    Returns: (cps, costs)
        cps   - best selected change-points
        costs - costs for 0,1,2,...,m change-points

    Memory requirement: ~ (3*N*N + N*ncp)*4 bytes ~= 16 * N^2 bytes
    That is 1,6 Gb for the N=10000.
    """
    m = ncp
    (_, scores) = cpd_nonlin(K, m, backtrack=False, **kwargs)
    # print("scores ",scores)

    N = K.shape[0]
    N2 = N * desc_rate  # length of the video before subsampling

    penalties = np.zeros(m + 1)
    # Prevent division by zero (in case of 0 changes)
    ncp = np.arange(1, m + 1)
    penalties[1:] = (vmax * ncp / (2.0 * N2)) * (np.log(float(N2) / ncp) + 1)

    costs = scores / float(N) + penalties
    m_best = np.argmin(costs)
    # print("cost ",costs)
    # print("m_best ",m_best)
    (cps, scores2) = cpd_nonlin(K, m_best, **kwargs)

    return (cps, costs)


# ------------------------------------------------------------------------------
# Extra functions (currently not used)

def estimate_vmax(K_stable):
    """K_stable - kernel between all frames of a stable segment"""
    n = K_stable.shape[0]
    vmax = np.trace(centering(K_stable) / n)
    return vmax


def centering(K):
    """Apply kernel centering"""
    mean_rows = np.mean(K, 1)[:, np.newaxis]
    return K - mean_rows - mean_rows.T + np.mean(mean_rows)


def eval_score(K, cps):
    """ Evaluate unnormalized empirical score
        (sum of kernelized scatters) for the given change-points """
    N = K.shape[0]
    cps = [0] + list(cps) + [N]
    V1 = 0
    V2 = 0
    for i in range(len(cps) - 1):
        K_sub = K[cps[i]:cps[i + 1], :][:, cps[i]:cps[i + 1]]
        V1 += np.sum(np.diag(K_sub))
        V2 += np.sum(K_sub) / float(cps[i + 1] - cps[i])
    return (V1 - V2)


def eval_cost(K, cps, score, vmax):
    """ Evaluate cost function for automatic number of change points selection
    K      - kernel between all frames
    cps    - selected change-points
    score  - unnormalized empirical score (sum of kernelized scatters)
    vmax   - vmax parameter"""

    N = K.shape[0]
    penalty = (vmax * len(cps) / (2.0 * N)) * (np.log(float(N) / len(cps)) + 1)
    return score / float(N) + penalty


def calc_scatters(K):
    n = K.shape[0]
    K1 = np.cumsum([0] + list(np.diag(K)))
    K2 = np.zeros((n + 1, n + 1)).astype(np.double())
    K2[1:, 1:] = np.cumsum(np.cumsum(K, 0), 1)  # TODO: use the fact that K - symmetric
    # KK = np.cumsum(K, 0).astype(np.double())
    # K2[1:, 1:] = np.cumsum(KK, 1) # TODO: use the fact that K - symmetric

    scatters = np.zeros((n, n))

    #     code = r"""
    #     for (int i = 0; i < n; i++) {
    #         for (int j = i; j < n; j++) {
    #             scatters(i,j) = K1(j+1)-K1(i) - (K2(j+1,j+1)+K2(i,i)-K2(j+1,i)-K2(i,j+1))/(j-i+1);
    #         }
    #     }
    #     """
    #     weave.inline(code, ['K1','K2','scatters','n'], global_dict = \
    #         {'K1':K1, 'K2':K2, 'scatters':scatters, 'n':n}, type_converters=weave.converters.blitz)

    for i in range(n):
        for j in range(i, n):
            scatters[i, j] = K1[j + 1] - K1[i] - (K2[j + 1, j + 1] + K2[i, i] - K2[j + 1, i] - K2[i, j + 1]) / (
                        j - i + 1)
    return scatters

def cpd_nonlin(K, ncp, lmin=1, lmax=100000, backtrack=True, verbose=True,
               out_scatters=None):
    """ Change point detection with dynamic programming
    K - square kernel matrix
    ncp - number of change points to detect (ncp >= 0)
    lmin - minimal length of a segment
    lmax - maximal length of a segment
    backtrack - when False - only evaluate objective scores (to save memory)

    Returns: (cps, obj)
        cps - detected array of change points: mean is thought to be constant on [ cps[i], cps[i+1] )
        obj_vals - values of the objective function for 0..m changepoints

    """
    m = int(ncp)  # prevent numpy.int64

    (n, n1) = K.shape
    assert (n == n1), "Kernel matrix awaited."

    assert (n >= (m + 1) * lmin)
    assert (n <= (m + 1) * lmax)
    assert (lmax >= lmin >= 1)

    if verbose:
        # print "n =", n
        print("Precomputing scatters...")
    J = calc_scatters(K)

    if out_scatters != None:
        out_scatters[0] = J

    if verbose:
        print("Inferring best change points...")
    I = 1e101 * np.ones((m + 1, n + 1))
    I[0, lmin:lmax] = J[0, lmin - 1:lmax - 1]

    if backtrack:
        p = np.zeros((m + 1, n + 1), dtype=int)
    else:
        p = np.zeros((1, 1), dtype=int)

    #     code = r"""
    #     #define max(x,y) ((x)>(y)?(x):(y))
    #     for (int k=1; k<m+1; k++) {
    #         for (int l=(k+1)*lmin; l<n+1; l++) {
    #             I(k, l) = 1e100; //nearly infinity
    #             for (int t=max(k*lmin,l-lmax); t<l-lmin+1; t++) {
    #                 double c = I(k-1, t) + J(t, l-1);
    #                 if (c < I(k, l)) {
    #                     I(k, l) = c;
    #                     if (backtrack == 1) {
    #                         p(k, l) = t;
    #                     }
    #                 }
    #             }
    #         }
    #     }
    #     """

    #     weave.inline(code, ['m','n','p','I', 'J', 'lmin', 'lmax', 'backtrack'], \
    #         global_dict={'m':m, 'n':n, 'p':p, 'I':I, 'J':J, \
    #         'lmin':lmin, 'lmax':lmax, 'backtrack': int(1) if backtrack else int(0)},
    #         type_converters=weave.converters.blitz)

    for k in range(1, m + 1):
        for l in range((k + 1) * lmin, n + 1):
            I[k, l] = 1e100
            for t in range(max(k * lmin, l - lmax), l - lmin + 1):
                c = I[k - 1, t] + J[t, l - 1]
                if (c < I[k, l]):
                    I[k, l] = c
                    if (backtrack == 1):
                        p[k, l] = t

    # Collect change points
    cps = np.zeros(m, dtype=int)

    if backtrack:
        cur = n
        for k in range(m, 0, -1):
            cps[k - 1] = p[k, cur]
            cur = cps[k - 1]

    scores = I[:, n].copy()
    scores[scores > 1e99] = np.inf
    return cps, scores