UniVTG / main /inference_hl.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
raw
history blame
8.81 kB
import os
import pdb
import time
import json
import pprint
import random
import importlib
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import sys
sys.path.append('/Users/kevin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import DatasetHL, prepare_batch_inputs_hl, start_end_collate_hl
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown, save_json, save_jsonl
from utils.model_utils import count_parameters
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def eval_epoch(model, train_val_dataset, opt): #, nms_thresh, device):
model.eval()
scores = []
train_val_dataset.set_state('val')
val_loader = DataLoader(
train_val_dataset,
collate_fn=start_end_collate_hl,
batch_size=opt.eval_bsz,
num_workers=opt.num_workers,
shuffle=False,
pin_memory=opt.pin_memory
)
with torch.no_grad():
for data in val_loader:
model_inputs, targets = prepare_batch_inputs_hl(data)
outputs = model(**model_inputs)
# pred_cls = outputs['pred_logits'].squeeze(-1)
# pred_cls = outputs['saliency_scores']
# pred_cls = outputs['saliency_scores'] + outputs['pred_logits'].squeeze(-1)
# pdb.set_trace()
if opt.f_loss_coef == 0:
pred_cls = outputs['saliency_scores']
elif opt.s_loss_intra_coef == 0:
pred_cls = outputs['pred_logits'].squeeze(-1)
else:
if opt.eval_mode == 'add':
pred_cls = outputs['saliency_scores'] + outputs['pred_logits'].squeeze(-1)
else:
pred_cls = outputs['pred_logits'].squeeze(-1)
pred_cls = pred_cls.detach().cpu()
scores.append(pred_cls)
map = round(train_val_dataset.evaluate(scores, save_dir='./plot')['mAP'] * 100, 4)
return map
def train_epoch(model, criterion, train_val_dataset, optimizer, opt, epoch_i, tb_writer):
logger.info(f"[Epoch {epoch_i+1}]")
model.train()
criterion.train()
train_val_dataset.set_state('train')
train_loader = DataLoader(
train_val_dataset,
collate_fn=start_end_collate_hl,
batch_size=opt.bsz,
num_workers=opt.num_workers,
shuffle=True,
pin_memory=opt.pin_memory
)
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
num_training_examples = len(train_loader)
timer_dataloading = time.time()
for batch_idx, batch in enumerate(train_loader):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_inputs, targets = prepare_batch_inputs_hl(batch)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
outputs = model(**model_inputs)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
loss_dict["loss_overall"] = float(losses)
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timer_dataloading = time.time()
if opt.debug and batch_idx == 3:
break
# print/add logs
tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
for k, v in loss_meters.items():
tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)
to_write = opt.train_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i+1,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
with open(opt.train_log_filepath, "a") as f:
f.write(to_write)
logger.info("Epoch time stats:")
for name, meter in time_meters.items():
d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
logger.info(f"{name} ==> {d}")
# train in single domain.
def train(model, criterion, optimizer, lr_scheduler, train_val_dataset, opt):
# if opt.device.type == "cuda":
# logger.info("CUDA enabled.")
# model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
prev_best_score = 0.
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_init else 0
else:
start_epoch = opt.start_epoch
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
train_epoch(model, criterion, train_val_dataset, optimizer, opt, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
scores = eval_epoch(model, train_val_dataset, opt)
tb_writer.add_scalar(f"Eval/HL-{opt.dset_name}-{train_val_dataset.domain}-mAP", float(scores), epoch_i+1)
if prev_best_score < scores:
prev_best_score = scores
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_{train_val_dataset.domain}_best.ckpt"))
tb_writer.close()
return prev_best_score
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
from main.config_hl import TVSUM_SPLITS, YOUTUBE_SPLITS
if opt.dset_name == "tvsum":
domain_splits = TVSUM_SPLITS.keys()
if opt.dset_name == "youtube":
domain_splits = YOUTUBE_SPLITS.keys()
scores = {}
if opt.lr_warmup > 0:
# total_steps = opt.n_epoch * len(train_dataset) // opt.bsz
total_steps = opt.n_epoch
warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps)
opt.lr_warmup = [warmup_steps, total_steps]
domain_splits = domain_splits if not opt.domain_name else [opt.domain_name]
for domain in domain_splits:
dataset_config = dict(
dset_name=opt.dset_name,
domain=domain,
data_path=opt.train_path,
v_feat_types=opt.v_feat_types,
v_feat_dirs=opt.v_feat_dirs,
t_feat_dir=opt.t_feat_dir,
use_tef=True
)
dataloader = DatasetHL(**dataset_config)
model, criterion, optimizer, lr_scheduler = setup_model(opt)
count_parameters(model)
logger.info(f"Start Training {domain}")
best_score = train(model, criterion, optimizer, lr_scheduler, dataloader, opt)
scores[domain] = best_score
scores['AVG'] = sum(scores.values()) / len(scores)
# save the final results.
save_metrics_path = os.path.join(opt.results_dir, f"best_{opt.dset_name}_{opt.eval_split_name}_preds_metrics.json")
save_json(scores, save_metrics_path, save_pretty=True, sort_keys=False)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text(f"HL-{opt.dset_name}", dict_to_markdown(scores, max_str_len=None))
tb_writer.add_scalar(f"Eval/HL-{opt.dset_name}-avg-mAP-key", float(scores['AVG']), 1)
tb_writer.close()
# return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug
print(opt.dset_name)
print(scores)
return
if __name__ == '__main__':
start_training()
results = logger.info("\n\n\nFINISHED TRAINING!!!")