UniVTG / main /train_vlp_ddp.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
raw
history blame
12 kB
import os
import pdb
import sys
import time
import json
import pprint
import random
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
sys.path.append('/data/home/qinghonglin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import \
DatasetMR, DatasetVLP, start_end_collate_mr, prepare_batch_inputs_mr
from main.inference_mr import eval_epoch, start_inference
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown
from utils.model_utils import count_parameters
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer):
logger.info(f"[Epoch {epoch_i+1}]")
model.train()
criterion.train()
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
num_training_examples = len(train_loader)
timer_dataloading = time.time()
for batch_idx, batch in tqdm(enumerate(train_loader),
desc="Training Iteration",
total=num_training_examples):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_inputs, targets = prepare_batch_inputs_mr(batch[1], torch.device("cuda", int(opt.local_rank)), non_blocking=opt.pin_memory)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
# try:
outputs = model(**model_inputs)
loss_dict = criterion(outputs, targets)
weight_dict = criterion.weight_dict
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
loss_dict["loss_overall"] = float(losses) # for logging only
for k, v in loss_dict.items():
loss_meters[k].update(float(v) * weight_dict[k] if k in weight_dict else float(v))
timer_dataloading = time.time()
# print/add logs
if int(opt.local_rank) in [0, -1]:
tb_writer.add_scalar("Train/lr", float(optimizer.param_groups[0]["lr"]), epoch_i+1)
for k, v in loss_meters.items():
tb_writer.add_scalar("Train/{}".format(k), v.avg, epoch_i+1)
to_write = opt.train_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i+1,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in loss_meters.items()]))
with open(opt.train_log_filepath, "a") as f:
f.write(to_write)
logger.info("Epoch time stats:")
for name, meter in time_meters.items():
d = {k: f"{getattr(meter, k):.4f}" for k in ["max", "min", "avg"]}
logger.info(f"{name} ==> {d}")
def train(model, criterion, optimizer, lr_scheduler, train_dataset, val_dataset, opt):
if int(opt.local_rank) in [0, -1]:
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
else:
tb_writer = None
train_loader = DataLoader(
train_dataset,
collate_fn=start_end_collate_mr,
batch_size=opt.bsz,
num_workers=opt.num_workers,
# shuffle=True,
pin_memory=opt.pin_memory,
sampler=DistributedSampler(train_dataset)
)
prev_best_score = 0.
es_cnt = 0
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_init else 0
else:
start_epoch = opt.start_epoch
save_submission_filename = "latest_{}_{}_preds.jsonl".format(opt.dset_name, opt.eval_split_name)
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
train_epoch(model, criterion, train_loader, optimizer, opt, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if int(opt.local_rank) in [0, -1] and opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
metrics_no_nms, metrics_nms, eval_loss_meters, latest_file_paths = \
eval_epoch(model, val_dataset, opt, save_submission_filename, epoch_i, criterion, tb_writer)
# log
to_write = opt.eval_log_txt_formatter.format(
time_str=time.strftime("%Y_%m_%d_%H_%M_%S"),
epoch=epoch_i,
loss_str=" ".join(["{} {:.4f}".format(k, v.avg) for k, v in eval_loss_meters.items()]),
eval_metrics_str=json.dumps(metrics_no_nms))
if int(opt.local_rank) in [0, -1]:
with open(opt.eval_log_filepath, "a") as f:
f.write(to_write)
logger.info("metrics_no_nms {}".format(pprint.pformat(metrics_no_nms["brief"], indent=4)))
if metrics_nms is not None:
logger.info("metrics_nms {}".format(pprint.pformat(metrics_nms["brief"], indent=4)))
metrics = metrics_nms if metrics_nms is not None else metrics_no_nms
for k, v in metrics["brief"].items():
tb_writer.add_scalar(f"Eval/{k}", float(v), epoch_i+1)
# stop_score = metrics["brief"]["MR-full-mAP"]
# pdb.set_trace()
stop_score = metrics["brief"][opt.main_metric]
if stop_score > prev_best_score:
es_cnt = 0
prev_best_score = stop_score
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"))
best_file_paths = [e.replace("latest", "best") for e in latest_file_paths]
for src, tgt in zip(latest_file_paths, best_file_paths):
os.renames(src, tgt)
logger.info("The checkpoint file has been updated.")
else:
es_cnt += 1
if opt.max_es_cnt != -1 and es_cnt > opt.max_es_cnt: # early stop
with open(opt.train_log_filepath, "a") as f:
f.write(f"Early Stop at epoch {epoch_i}")
logger.info(f"\n>>>>> Early stop at epoch {epoch_i} {prev_best_score}\n")
break
# save ckpt
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", "_latest.ckpt"))
if int(opt.local_rank) in [0, -1] and ((epoch_i + 1) % opt.save_interval == 0 or (epoch_i + 1) % opt.lr_drop == 0): # additional copies
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_e{epoch_i:04d}.ckpt"))
if opt.debug:
break
if int(opt.local_rank) in [0, -1]:
tb_writer.close()
def start_training():
# logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
if opt.debug: # keep the model run deterministically
# 'cudnn.benchmark = True' enabled auto finding the best algorithm for a specific input/net config.
# Enable this only when input size is fixed.
cudnn.benchmark = False
cudnn.deterministic = True
local_rank = int(opt.local_rank)
dist.init_process_group(backend='nccl')
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
dataset_config = dict(
dset_name=opt.dset_name,
data_path=opt.train_path,
v_feat_dirs=opt.v_feat_dirs,
q_feat_dir=opt.t_feat_dir,
v_feat_dim=opt.v_feat_dim,
q_feat_dim=opt.t_feat_dim,
q_feat_type="last_hidden_state",
max_q_l=opt.max_q_l,
max_v_l=opt.max_v_l,
ctx_mode=opt.ctx_mode,
data_ratio=opt.data_ratio,
normalize_v=not opt.no_norm_vfeat,
normalize_t=not opt.no_norm_tfeat,
clip_len=opt.clip_length,
max_windows=opt.max_windows,
span_loss_type=opt.span_loss_type,
txt_drop_ratio=opt.txt_drop_ratio,
use_cache=opt.use_cache,
add_easy_negative=opt.add_easy_negative,
easy_negative_only=opt.easy_negative_only
)
dataset_config["data_path"] = opt.train_path
train_dataset = DatasetVLP(**dataset_config)
if opt.eval_path is not None:
# perform zero-shot on qvhl.
dataset_config["data_path"] = opt.eval_path
dataset_config["txt_drop_ratio"] = 0
if len(dataset_config["v_feat_dirs"]) == 1:
dataset_config["v_feat_dirs"] = ["data/qvhighlights/vid_clip"]
elif len(dataset_config["v_feat_dirs"]) == 2:
dataset_config["v_feat_dirs"] = ["data/qvhighlights/vid_slowfast", "data/qvhighlights/vid_clip"]
else:
raise NotImplementedError
dataset_config["q_feat_dir"] = "data/qvhighlights/txt_clip"
dataset_config["data_ratio"] = 1
# dataset_config["q_feat_dir"] = opt.t_feat_dir.replace("txt_clip_asr", "txt_clip").replace("txt_clip_cap", "txt_clip") # for pretraining
eval_dataset = DatasetMR(**dataset_config)
else:
eval_dataset = None
if opt.lr_warmup > 0:
# total_steps = opt.n_epoch * len(train_dataset) // opt.bsz
total_steps = opt.n_epoch
warmup_steps = opt.lr_warmup if opt.lr_warmup > 1 else int(opt.lr_warmup * total_steps)
opt.lr_warmup = [warmup_steps, total_steps]
model, criterion, optimizer, lr_scheduler = setup_model(opt)
model.to(device)
logger.info(f"Using {torch.cuda.device_count()} GPUs.")
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True)
if int(opt.local_rank) in [0, -1]:
logger.info(f"Model {model}")
count_parameters(model)
logger.info("Start Training...")
train(model, criterion, optimizer, lr_scheduler, train_dataset, eval_dataset, opt)
# return opt.ckpt_filepath.replace(".ckpt", "_best.ckpt"), opt.eval_split_name, opt.eval_path, opt.debug
return
if __name__ == '__main__':
# best_ckpt_path, eval_split_name, eval_path, debug = start_training()
start_training()