Spaces:
Runtime error
Runtime error
import copy | |
import pdb | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
def mask_logits(inputs, mask, mask_value=-1e30): | |
mask = mask.type(torch.float32) | |
return inputs + (1.0 - mask) * mask_value | |
class Transformer(nn.Module): | |
def __init__(self, d_model=512, nhead=8, num_encoder_layers=4, | |
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, droppath=0.1, | |
activation="gelu", normalize_before=False, # False as default | |
return_intermediate_dec=False): | |
super().__init__() | |
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, | |
dropout, droppath, activation, normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | |
self._reset_parameters() | |
self.d_model = d_model | |
self.nhead = nhead | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def forward(self, src, mask, pos_embed): | |
""" | |
Args: | |
src: (batch_size, L, d) | |
mask: (batch_size, L) | |
query_embed: (#queries, d) -> my imple (batch_size, d) and #queries=1 | |
pos_embed: (batch_size, L, d) the same as src | |
Returns: | |
""" | |
# flatten NxCxHxW to HWxNxC | |
src = src.permute(1, 0, 2) # (L, batch_size, d) | |
pos_embed = pos_embed.permute(1, 0, 2) # (L, batch_size, d) | |
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed) | |
memory = memory.transpose(0, 1) | |
return memory | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None, return_intermediate=False): | |
super().__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.return_intermediate = return_intermediate | |
def forward(self, src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
intermediate = [] | |
for layer in self.layers: | |
output = layer(output, src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, pos=pos) | |
if self.return_intermediate: | |
intermediate.append(output) | |
if self.norm is not None: | |
output = self.norm(output) | |
if self.return_intermediate: | |
return torch.stack(intermediate) | |
return output | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, droppath=0.1, | |
activation="relu", normalize_before=False): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
# self.dropout1 = nn.Dropout(dropout) | |
# self.dropout2 = nn.Dropout(dropout) | |
self.droppath1 = DropPath(droppath) | |
self.droppath2 = DropPath(droppath) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] | |
# src2 = self.self_attn_eff(q=q, k=k, v=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.droppath1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.activation(self.linear1(src))) | |
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.droppath2(src2) | |
src = self.norm2(src) | |
return src | |
def forward(self, src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def build_transformer(args): | |
return Transformer( | |
d_model=args.hidden_dim, | |
dropout=args.dropout, | |
droppath=args.droppath, | |
nhead=args.nheads, | |
dim_feedforward=args.dim_feedforward, | |
num_encoder_layers=args.enc_layers, | |
num_decoder_layers=args.dec_layers, | |
normalize_before=args.pre_norm, | |
return_intermediate_dec=True, | |
) | |
def drop_path(x, drop_prob=0.0, training=False): | |
""" | |
Stochastic Depth per sample. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) | |
mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
mask.floor_() | |
x = x.div(keep_prob) * mask | |
return x | |
class DropPath(nn.Module): | |
""" | |
Drop paths per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
x = x.permute(1, 0, 2) | |
res = drop_path(x, self.drop_prob, self.training) | |
return res.permute(1, 0, 2) | |
# return drop_path(x, self.drop_prob, self.training) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |