XL_gradio_space / app.py
KevinXiong2022's picture
Create app.py
24a09c9
raw
history blame
449 Bytes
import gradio as gr
from transformers import pipeline
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
def predict(image):
predictions = pipeline(image)
return {p["label"]: p["score"] for p in predictions}
gr.Interface(
predict,
inputs=gr.inputs.Image(label="Upload hot dog candidate", type="filepath"),
outputs=gr.outputs.Label(num_top_classes=2),
title="Hot Dog? Or Not?",
).launch()