from flask import Flask, request from transformers import AutoModelForImageClassification from transformers import AutoImageProcessor from PIL import Image import torch app = Flask(__name__) model = AutoModelForImageClassification.from_pretrained( './myModel') image_processor = AutoImageProcessor.from_pretrained( "google/vit-base-patch16-224-in21k") @app.route('/upload_image', methods=['POST']) def upload_image(): # Get the image file from the request image_file = request.files['image'] # Save the image file to a desired location on the server image_path = "assets/img.jpg" image_file.save(image_path) # You can perform additional operations with the image here # ... return 'Image uploaded successfully' @app.route('/get_text', methods=['GET']) def get_text(): image = Image.open('assets/img.jpg') inputs = image_processor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_label = logits.argmax(-1).item() disease = model.config.id2label[predicted_label] return disease if __name__ == '__app__': app.run(host='192.168.1.7', port=5000 ) # if __name__ == '__app__': # app.run(host="0.0.0.0",port=7860)