# from flask import Flask, request # from transformers import AutoModelForImageClassification # from transformers import AutoImageProcessor # from PIL import Image # import torch # app = Flask(__name__) # model = AutoModelForImageClassification.from_pretrained( # './myModel') # image_processor = AutoImageProcessor.from_pretrained( # "google/vit-base-patch16-224-in21k") # @app.route('/upload_image', methods=['POST']) # def upload_image(): # # Get the image file from the request # image_file = request.files['image'] # # Save the image file to a desired location on the server # image_path = "assets/img.jpg" # image_file.save(image_path) # # You can perform additional operations with the image here # # ... # return 'Image uploaded successfully' # @app.route('/get_text', methods=['GET']) # def get_text(): # image = Image.open('assets/img.jpg') # inputs = image_processor(image, return_tensors="pt") # with torch.no_grad(): # logits = model(**inputs).logits # predicted_label = logits.argmax(-1).item() # disease = model.config.id2label[predicted_label] # return disease # if __name__ == '__app__': # app.run( host='192.168.1.1',port=8080)