Khush12295 commited on
Commit
e26f7dd
1 Parent(s): 734da97

Upload week2assignment_shakes.py

Browse files
Files changed (1) hide show
  1. week2assignment_shakes.py +277 -0
week2assignment_shakes.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """week2assignment_shakes.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1OfNmkHMwkuJONUG4yQHDwJiuzLJvF1kJ
8
+ """
9
+
10
+ !pip install openai langchain python-dotenv -q
11
+
12
+ !echo openai_api_key="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" > .env
13
+
14
+ import os
15
+ import openai
16
+ from dotenv import load_dotenv
17
+
18
+ load_dotenv(".env")
19
+
20
+ openai.api_key = os.environ.get("openai_api_key")
21
+
22
+ from IPython.display import display, Markdown
23
+
24
+ def disp_markdown(text: str) -> None:
25
+ display(Markdown(text))
26
+
27
+ from langchain.chat_models import ChatOpenAI
28
+ from langchain.schema import HumanMessage
29
+
30
+ chat_model = ChatOpenAI(model_name="gpt-3.5-turbo", openai_api_key=os.environ.get("openai_api_key"))
31
+
32
+ from langchain.schema import (
33
+ AIMessage,
34
+ HumanMessage,
35
+ SystemMessage
36
+ )
37
+
38
+ # The SystemMessage is associated with the system role
39
+ system_message = SystemMessage(content="You are a food critic.")
40
+
41
+ # The HumanMessage is associated with the user role
42
+ user_message = HumanMessage(content="Do you think Kraft Dinner constitues fine dining?")
43
+
44
+ # The AIMessage is associated with the assistant role
45
+ assistant_message = AIMessage(content="Egads! No, it most certainly does not!")
46
+
47
+ second_user_message = HumanMessage(content="What about Red Lobster, surely that is fine dining!")
48
+
49
+ # create the list of prompts
50
+ list_of_prompts = [
51
+ system_message,
52
+ user_message,
53
+ assistant_message,
54
+ second_user_message
55
+ ]
56
+
57
+ # we can just call our chat_model on the list of prompts!
58
+ chat_model(list_of_prompts)
59
+
60
+ from langchain.prompts.chat import (
61
+ ChatPromptTemplate,
62
+ SystemMessagePromptTemplate,
63
+ HumanMessagePromptTemplate
64
+ )
65
+
66
+ # we can signify variables we want access to by wrapping them in {}
67
+ system_prompt_template = "You are an expert in {SUBJECT}, and you're currently feeling {MOOD}"
68
+ system_prompt_template = SystemMessagePromptTemplate.from_template(system_prompt_template)
69
+
70
+ user_prompt_template = "{CONTENT}"
71
+ user_prompt_template = HumanMessagePromptTemplate.from_template(user_prompt_template)
72
+
73
+ # put them together into a ChatPromptTemplate
74
+ chat_prompt = ChatPromptTemplate.from_messages([system_prompt_template, user_prompt_template])
75
+
76
+ formatted_chat_prompt = chat_prompt.format_prompt(SUBJECT="cheeses", MOOD="quite tired", CONTENT="Hi, what are the finest cheeses?").to_messages()
77
+
78
+ disp_markdown(chat_model(formatted_chat_prompt).content)
79
+
80
+ from langchain.chains import LLMChain
81
+
82
+ chain = LLMChain(llm=chat_model, prompt=chat_prompt)
83
+
84
+ disp_markdown(chain.run(SUBJECT="classic cars", MOOD="angry", CONTENT="Is the 67 Chevrolet Impala a good vehicle?"))
85
+
86
+ !wget https://erki.lap.ee/failid/raamatud/guide1.txt
87
+
88
+ with open("guide1.txt") as f:
89
+ hitchhikersguide = f.read()
90
+
91
+ from langchain.text_splitter import CharacterTextSplitter
92
+
93
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0, separator = "\n")
94
+ texts = text_splitter.split_text(hitchhikersguide)
95
+
96
+ from langchain.embeddings.openai import OpenAIEmbeddings
97
+
98
+ os.environ["OPENAI_API_KEY"] = openai.api_key
99
+
100
+ embeddings = OpenAIEmbeddings()
101
+
102
+ # !pip install chromadb==0.3.22 tiktoken -q
103
+
104
+ # !pip install chromadb -U
105
+
106
+ !pip install pydantic -q
107
+ import chromadb
108
+
109
+ from langchain.vectorstores.chroma import Chroma
110
+ docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever()
111
+
112
+ query = "What makes towels important?"
113
+ docs = docsearch.get_relevant_documents(query)
114
+
115
+ docs[0]
116
+
117
+ from langchain.chains.question_answering import load_qa_chain
118
+ from langchain.llms import OpenAI
119
+
120
+ chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
121
+ query = "What makes towels important?"
122
+ chain.run(input_documents=docs, question=query)
123
+
124
+ """# Assignment 2
125
+
126
+ """
127
+
128
+ !git clone https://github.com/TheMITTech/shakespeare
129
+
130
+ from glob import glob
131
+
132
+ files = glob("./shakespeare/**/*.html")
133
+
134
+ import shutil
135
+ import os
136
+
137
+ os.mkdir('./data')
138
+ destination_folder = './data/'
139
+
140
+ for html_file in files:
141
+ shutil.move(html_file, destination_folder + html_file.split("/")[-1])
142
+
143
+ !pip install beautifulsoup4 -q
144
+
145
+ from langchain.document_loaders import BSHTMLLoader, DirectoryLoader
146
+
147
+ bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader)
148
+
149
+ data = bshtml_dir_loader.load()
150
+
151
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
152
+
153
+ text_splitter = RecursiveCharacterTextSplitter(
154
+ chunk_size = 1000,
155
+ chunk_overlap = 20,
156
+ length_function = len,
157
+ )
158
+
159
+ documents = text_splitter.split_documents(data)
160
+
161
+ persist_directory = "vector_db"
162
+
163
+ vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory)
164
+
165
+ vectordb.persist()
166
+ vectordb = None
167
+
168
+ vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
169
+
170
+ llm = ChatOpenAI(temperature=0, model="gpt-4")
171
+
172
+ doc_retriever = vectordb.as_retriever()
173
+
174
+ from langchain.chains import RetrievalQA
175
+
176
+ shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever)
177
+
178
+ shakespeare_qa.run("Who is Hamlet'?")
179
+
180
+ !pip install google-search-results -q
181
+
182
+ os.environ["SERPAPI_API_KEY"] = "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"
183
+
184
+ from langchain.utilities import SerpAPIWrapper
185
+
186
+ search = SerpAPIWrapper()
187
+
188
+ from langchain.agents import initialize_agent, Tool
189
+ from langchain.agents import AgentType
190
+ from langchain.tools import BaseTool
191
+ from langchain.llms import OpenAI
192
+ from langchain import LLMMathChain, SerpAPIWrapper
193
+
194
+ tools = [
195
+ Tool(
196
+ name = "Shakespeare QA System",
197
+ func=shakespeare_qa.run,
198
+ description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question."
199
+ ),
200
+ Tool(
201
+ name = "SERP API Search",
202
+ func=search.run,
203
+ description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."
204
+ ),
205
+ ]
206
+
207
+ agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
208
+
209
+ agent.run("What is Hamlet and more importantly who is hamlet?")
210
+
211
+ from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory
212
+
213
+ memory = ConversationBufferMemory(memory_key="chat_history")
214
+ readonlymemory = ReadOnlySharedMemory(memory=memory)
215
+
216
+ shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever, memory=readonlymemory)
217
+
218
+ tools = [
219
+ Tool(
220
+ name = "Shakespeare QA System",
221
+ func=shakespeare_qa.run,
222
+ description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question."
223
+ ),
224
+ Tool(
225
+ name = "SERP API Search",
226
+ func=search.run,
227
+ description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question."
228
+ ),
229
+ ]
230
+
231
+ from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
232
+
233
+ prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:"""
234
+ suffix = """Begin!"
235
+
236
+ {chat_history}
237
+ Question: {input}
238
+ {agent_scratchpad}"""
239
+
240
+ prompt = ZeroShotAgent.create_prompt(
241
+ tools,
242
+ prefix=prefix,
243
+ suffix=suffix,
244
+ input_variables=["input", "chat_history", "agent_scratchpad"]
245
+ )
246
+
247
+ from langchain import OpenAI, LLMChain, PromptTemplate
248
+
249
+ llm_chain = LLMChain(llm=llm, prompt=prompt)
250
+
251
+ agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
252
+ agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
253
+
254
+ agent_chain.run(input="Who is Hamlet and What is Hamlet?")
255
+
256
+ agent_chain.run(input="What age was he in the play?")
257
+
258
+ agent_chain.run(input="Did he live through the play?")
259
+
260
+ agent_chain.run(input="What age did you think he was if you approximate without directly reading it from the play? You make the inference on his acts and ages of people in his life")
261
+
262
+ !pip install gradio
263
+
264
+ import gradio as gr
265
+
266
+ def the_app(text):
267
+ return agent_chain.run(input=text)
268
+
269
+ x=the_app('who is gertrude?')
270
+
271
+ x
272
+
273
+ iface = gr.Interface(fn= the_app, inputs= "text", outputs="text",title="Shakespearean")
274
+
275
+ iface.launch()
276
+
277
+ 7688iu78u87u78i