Spaces:
Running
Running
File size: 1,286 Bytes
a5c86e8 1d2e2ec 5457abc 1d2e2ec a5c86e8 9b2107c 5869f83 1c90066 9b2107c 0c511b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import subprocess
# Run the setup.py install command
try:
subprocess.run(['python', 'setup.py', 'install', '--user'], check=True)
print("Installation successful.")
except subprocess.CalledProcessError as e:
print(f"Installation failed with error: {e}")
import gradio as gr
import torch
from TTS.api import TTS
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Init TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
def voice_clone(text: str, speaker_wav: str, language: str):
# Run TTS
print("Speaker wav:", speaker_wav)
tts.tts_to_file(text=text, speaker_wav=speaker_wav, language=language, file_path="output.wav")
return "output.wav"
iface = gr.Interface(fn=voice_clone,
inputs=[gr.Textbox(label="Text", info="One or two sentences at a time is better", max_lines=3), gr.Audio(type="filepath", label="Voice spectrogram"), gr.Radio(label="language", info="Select an output language for the synthesised speech", choices=["en", "zh-cn", "ja", "de", "fr", "it", "pt", "pl", "tr", "ko", "nl", "cs", "ar", "es", "hu", "ru"], value="en")],
outputs=gr.Audio(type="filepath", label="Synthesised spectrogram"),
title="Voice Cloning")
iface.launch () |