# Import the Gradio library for creating web interfaces | |
import gradio as gr | |
# Import the pipeline module from transformers for using pre-trained models | |
from transformers import pipeline | |
# Import numpy for numerical operations | |
import numpy as np | |
# Initialize the automatic speech recognition pipeline using the Whisper base English model | |
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") | |
# Define the transcription function that takes audio input and returns transcribed text | |
def transcribe(stream,new_chunk): | |
# Unpack the audio tuple into sample rate (sr) and audio data (y) | |
sr, y = new_chunk | |
# Convert the audio data to 32-bit float | |
y = y.astype(np.float32) | |
# Normalize the audio data to be between -1 and 1 | |
y /= np.max(np.abs(y)) | |
if stream is not None: | |
stream = np.concatenate([stream, y]) | |
else: | |
stream = y | |
# Use the transcriber to convert audio to text and return the result | |
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"] | |
# Create a Gradio interface for the transcribe function | |
demo = gr.Interface( | |
# Specify the function to run | |
transcribe, | |
# Define the input component as an audio recorder with microphone source | |
["state", gr.Audio(sources=["microphone"], streaming=True)], | |
# Specify the output component as text | |
["state", "text"], | |
live = True | |
) | |
demo.launch() |