Spaces:
Sleeping
Sleeping
File size: 12,492 Bytes
2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 014c1b6 2d3ad00 4bcee90 2d3ad00 4078c16 2d3ad00 4078c16 2d3ad00 4078c16 2d3ad00 70bb2f5 2d3ad00 70bb2f5 2d3ad00 4078c16 2d3ad00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import os
import gradio as gr
import torch
from darts import TimeSeries, concatenate
from darts.dataprocessing.transformers import Scaler
from darts.utils.timeseries_generation import datetime_attribute_timeseries
from darts.models.forecasting.tft_model import TFTModel
from darts.metrics import mape
from dateutil.relativedelta import relativedelta
import warnings
warnings.filterwarnings("ignore")
import logging
logging.disable(logging.CRITICAL)
import pandas as pd
import numpy as np
from typing import Any, List, Optional
import plotly.graph_objects as go
df_final = pd.read_csv('data/all_afghan.csv',parse_dates=['Date'])
df_comtrade_flour = pd.read_csv('data/comtrade_flour.csv',parse_dates=['Date'])
df_comtrade_grain = pd.read_csv('data/comtrade_grain.csv',parse_dates=['Date'])
series = TimeSeries.from_dataframe(df_final,
time_col='Date',
value_cols=['price', 'usdprice', 'wheat_grain', 'exchange_rate','common_unit_price','black_sea']
)
six_months = df_final['Date'].max() + relativedelta(months=-6)
data_series = series['common_unit_price']
train, val = data_series.split_after(six_months)
transformer = Scaler()
train_transformed = transformer.fit_transform(train)
val_transformed = transformer.transform(val)
series_transformed = transformer.transform(data_series)
# create year, month and integer index covariate series
covariates = datetime_attribute_timeseries(series_transformed, attribute="year", one_hot=False)
covariates = covariates.stack(
datetime_attribute_timeseries(series_transformed, attribute="month", one_hot=True)
)
covariates = covariates.stack(
TimeSeries.from_times_and_values(
times=series_transformed.time_index,
values=np.arange(len(series_transformed)),
)
)
covariates = covariates.add_holidays(country_code="ES")
covariates = covariates.astype(np.float32)
scaler_covs = Scaler()
cov_train, cov_val = covariates.split_after(six_months)
cov_train = scaler_covs.fit_transform(cov_train)
cov_val = scaler_covs.transform(cov_val)
covariates_transformed = scaler_covs.transform(covariates)
grain_series = series['wheat_grain']
grain_scaler = Scaler()
grain_train, grain_val = grain_series.split_after(six_months)
grain_train = grain_scaler.fit_transform(grain_train)
grain_val = grain_scaler.transform(grain_val)
grain_series_scaled = grain_scaler.transform(grain_series)
pakistan_series = series["price"]
pakistan_scaler = Scaler()
pakistan_train, pakistan_val = pakistan_series.split_after(six_months)
pakistan_train = pakistan_scaler.fit_transform(pakistan_train)
pakistan_val = pakistan_scaler.transform(pakistan_val)
pakistan_series_scaled = pakistan_scaler.transform(pakistan_series)
usd_series = series['usdprice']
usd_scaler = Scaler()
usd_train, usd_val = usd_series.split_after(six_months)
usd_train = usd_scaler.fit_transform(usd_train)
usd_val = usd_scaler.transform(usd_val)
usd_series_scaled = usd_scaler.transform(usd_series)
erate_series = series['exchange_rate']
erate_scaler = Scaler()
erate_train, erate_val = erate_series.split_after(six_months)
erate_train_transformed = erate_scaler.fit_transform(erate_train)
erate_val_transformed = erate_scaler.transform(erate_val)
erate_series_scaled = erate_scaler.transform(erate_series)
black_sea = series['black_sea']
black_sea_scaler = Scaler()
black_train,black_val = black_sea.split_after(six_months)
black_train_transformed = black_sea_scaler.fit_transform(black_train)
black_val_transformed = black_sea_scaler.transform(black_val)
black_sea_series = black_sea_scaler.transform(black_sea)
comtrade_flour_series = TimeSeries.from_dataframe(df_comtrade_flour,
time_col="Date")
comtrade_grain_series = TimeSeries.from_dataframe(df_comtrade_grain,
time_col="Date")
from darts import concatenate
my_multivariate_series = concatenate(
[
grain_series_scaled,
pakistan_series_scaled,
# usd_series_scaled,
erate_series_scaled,
black_sea_series,
comtrade_flour_series,
comtrade_grain_series,
covariates_transformed,
],
axis=1)
multivariate_series_train = concatenate(
[
grain_train,
pakistan_train,
# usd_train,
erate_train,
#russian_train_transformed,
# black_train_transformed,
cov_train,
],
axis=1)
class FlaggingHandler(gr.FlaggingCallback):
def __init__(self):
self._csv_logger = gr.CSVLogger()
def setup(self, components: List[gr.components.Component], flagging_dir: str):
"""Called by Gradio at the beginning of the `Interface.launch()` method.
Parameters:
components: Set of components that will provide flagged data.
flagging_dir: A string, typically containing the path to the directory where
the flagging file should be storied (provided as an argument to Interface.__init__()).
"""
self.components = components
self._csv_logger.setup(components=components, flagging_dir=flagging_dir)
def flag(
self,
flag_data: List[Any],
flag_option: Optional[str] = None,
# flag_index: Optional[int] = None,
username: Optional[str] = None,
) -> int:
"""Called by Gradio whenver one of the <flag> buttons is clicked.
Parameters:
interface: The Interface object that is being used to launch the flagging interface.
flag_data: The data to be flagged.
flag_option (optional): In the case that flagging_options are provided, the flag option that is being used.
flag_index (optional): The index of the sample that is being flagged.
username (optional): The username of the user that is flagging the data, if logged in.
Returns:
(int) The total number of samples that have been flagged.
"""
for item in flag_data:
print(f"Flagging: {item}")
if flag_option:
print(f"Flag option: {flag_option}")
# if flag_index:
# print(f"Flag index: {flag_index}")
flagged_count = self._csv_logger.flag(
flag_data=flag_data,
flag_option=flag_option,
# flag_index=flag_index,
# username=username,
)
return flagged_count
def get_forecast(period_: str, pred_model: str):
# Let the prediction service do its magic.
period = int(period_[0])
afgh_model = TFTModel.load("Afghan_w_blacksea_allcomtrade_aug31.pt",map_location=torch.device('cpu'))
### afgh model###
pred_series = afgh_model.predict(n=period,num_samples=1)
preds = transformer.inverse_transform(pred_series)
# creating a Dataframe
df_= preds.pd_dataframe()
df_.rename(columns={'common_unit_price': 'Wheat_Forecast'},inplace=True)
# error intervals:
# Calculate the 90% and 110% forecast values
forecast_90 = preds * 0.9
forecast_110 = preds * 1.1
df_90 = forecast_90.pd_dataframe()
df_90.rename(columns={'common_unit_price': 'Lower_Limit'},inplace=True)
df_110 = forecast_110.pd_dataframe()
df_110.rename(columns={'common_unit_price': 'Upper_Limit'},inplace=True)
merged_df = pd.merge(df_90,df_, on=['Date']).merge(df_110, on=['Date'])
merged_df = merged_df.reset_index()
merged_df.to_csv('data/afghan_wheatfcasts.csv',index=False)
start=pd.Timestamp("20180131")
backtest_series_ = afgh_model.historical_forecasts(
series_transformed,
past_covariates=my_multivariate_series,
start=start,
forecast_horizon=period,
retrain=False,
verbose=False,
)
series_time = series_transformed[-len(backtest_series_):].time_index
series_vals = (transformer.inverse_transform(series_transformed[-len(backtest_series_):])).values()
df_series = pd.DataFrame(data={'Date': series_time, 'actual_prices': series_vals.ravel() })
vals = (transformer.inverse_transform(backtest_series_)).values()
df_backtest = pd.DataFrame(data={'Date': backtest_series_.time_index, 'historical_forecasts': vals.ravel() })
# df_backtest_wheat = pd.DataFrame(data={'Date': backtest_series_.time_index, 'historical_wheat_forecasts': vals.ravel() })
df_wheat_output = pd.merge(df_series,df_backtest[['Date',"historical_forecasts"]],on=['Date'],how='left')
df_wheat_output.to_csv('data/aghanwheat_allhistorical.csv',index=False)
# Create figure
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=list(df_backtest.Date),
y=list(df_backtest.historical_forecasts),
name='historical forecasts'
# x=list(df.Date), y=list(df.High)
))
fig.add_trace(
go.Scatter(
x=list(df_series.Date),
y=list(df_series.actual_prices),
name="actual prices",
))
fig.add_trace(go.Scatter(
x = list(merged_df.Date),
y=list(merged_df.Upper_Limit),
name="Upper limit"
))
fig.add_trace(go.Scatter(
x = list(merged_df.Date),
y=list(merged_df.Lower_Limit),
name="Lower limit"
))
fig.add_trace(go.Scatter(
x = list(merged_df.Date),
y=list(merged_df.Wheat_Forecast),
name=" Wheat Forecast"
))
# Set title
fig.update_layout(
title_text=f"\n Mean Absolute Percentage Error {mape(transformer.inverse_transform(series_transformed), transformer.inverse_transform(backtest_series_)):.2f}%"
)
# Add range slider
fig.update_layout(
xaxis=dict(
rangeselector=dict(
buttons=list([
dict(count=1,
label="1m",
step="month",
stepmode="backward"),
dict(count=6,
label="6m",
step="month",
stepmode="todate"),
dict(count=1,
label="YTD",
step="year",
stepmode="todate"),
# dict(count=1,
# label="1y",
# step="year",
# stepmode="backward"),
# dict(step="all")
])
),
rangeslider=dict(
visible=True
),
type="date"
)
)
return merged_df,fig
def main():
flagging_handler = FlaggingHandler()
# example_url = "" # noqa: E501
with gr.Blocks() as iface:
gr.Markdown(
"""
**Timeseries Forecasting model Temporal Fusion Transformer(TFT) built on Darts library**.
""")
commodity = gr.Radio(["Wheat Price Forecasting"],label="Commodity to Forecast")
period = gr.Radio(['3 months',"6 months"],label="Forecast horizon")
# with gr.Row():
# lib = gr.Dropdown(["pandas", "scikit-learn", "torch", "prophet"], label="Library", value="torch")
# time = gr.Dropdown(["3 months", "6 months",], label="Downloads over the last...", value="6 months")
with gr.Row():
btn = gr.Button("Forecast.")
feedback = gr.Textbox(label="Give feedback")
gr.CSVLogger()
data_points = gr.Textbox(label=f"Forecast values. Lower and upper values include a 10% error rate")
plt = gr.Plot(label="Backtesting plot, from 2018").style()
btn.click(
get_forecast,
inputs=[period,commodity],
outputs = [data_points,plt]
)
with gr.Row():
btn_incorrect = gr.Button("Flag as incorrect")
btn_other = gr.Button("Flag as other")
flagging_handler.setup(
components=[commodity, period],
flagging_dir="data/flagged",
)
btn_incorrect.click(
lambda *args: flagging_handler.flag(
flag_data=args, flag_option="Incorrect"
),
[commodity, data_points, period,feedback],
None,
preprocess=False,
)
btn_other.click(
lambda *args: flagging_handler.flag(flag_data=args, flag_option="Other"),
[commodity, data_points, period,feedback],
None,
preprocess=False,
)
iface.launch(debug=True, inline=False)
main() |