Update app.py
Browse files
app.py
CHANGED
@@ -29,10 +29,10 @@ def apply_filter(image, filter_type, intensity):
|
|
29 |
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
30 |
|
31 |
enhancer = ImageEnhance.Sharpness(image_pil)
|
32 |
-
image_pil = enhancer.enhance(1 + 0.
|
33 |
|
34 |
enhancer = ImageEnhance.Color(image_pil)
|
35 |
-
image_pil = enhancer.enhance(1 + 0.
|
36 |
|
37 |
enhanced_image = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
38 |
return enhanced_image
|
@@ -47,13 +47,13 @@ def apply_filter(image, filter_type, intensity):
|
|
47 |
cold_image = cv2.applyColorMap(cold_image, cv2.COLORMAP_WINTER)
|
48 |
return cv2.cvtColor(cold_image, cv2.COLOR_RGB2BGR)
|
49 |
elif filter_type == "High-Key":
|
50 |
-
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.
|
51 |
return high_key
|
52 |
elif filter_type == "Low-Key":
|
53 |
-
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.
|
54 |
return low_key
|
55 |
elif filter_type == "Haze":
|
56 |
-
haze = cv2.addWeighted(image, 1.0 - 0.
|
57 |
return haze
|
58 |
else:
|
59 |
return image
|
|
|
29 |
image_pil = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
30 |
|
31 |
enhancer = ImageEnhance.Sharpness(image_pil)
|
32 |
+
image_pil = enhancer.enhance(1 + 0.5 * adjusted_intensity) # 강도 반영
|
33 |
|
34 |
enhancer = ImageEnhance.Color(image_pil)
|
35 |
+
image_pil = enhancer.enhance(1 + 0.5 * adjusted_intensity) # 강도 반영
|
36 |
|
37 |
enhanced_image = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
38 |
return enhanced_image
|
|
|
47 |
cold_image = cv2.applyColorMap(cold_image, cv2.COLORMAP_WINTER)
|
48 |
return cv2.cvtColor(cold_image, cv2.COLOR_RGB2BGR)
|
49 |
elif filter_type == "High-Key":
|
50 |
+
high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.8 * normalized_intensity, beta=30)
|
51 |
return high_key
|
52 |
elif filter_type == "Low-Key":
|
53 |
+
low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.7 * normalized_intensity, beta=-30)
|
54 |
return low_key
|
55 |
elif filter_type == "Haze":
|
56 |
+
haze = cv2.addWeighted(image, 1.0 - 0.7 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0)
|
57 |
return haze
|
58 |
else:
|
59 |
return image
|