import gradio as gr import cv2 import numpy as np from PIL import Image, ImageEnhance from gradio_imageslider import ImageSlider def apply_filter(image, filter_type, intensity): image = np.array(image) normalized_intensity = intensity / 100.0 if filter_type == "Grayscale": return convert_to_grayscale(image) elif filter_type == "Soft Glow": base_intensity = 0.1 adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity)) gaussian = cv2.GaussianBlur(image, (15, 15), 0) soft_glow = cv2.addWeighted(image, 1 - adjusted_intensity, gaussian, adjusted_intensity, 0) return soft_glow elif filter_type == "Portrait Enhancer": base_intensity = 0.5 adjusted_intensity = base_intensity + (normalized_intensity * (1 - base_intensity)) image_pil = Image.fromarray(image) enhancer = ImageEnhance.Sharpness(image_pil) image_pil = enhancer.enhance(1 + 0.5 * adjusted_intensity) enhancer = ImageEnhance.Color(image_pil) image_pil = enhancer.enhance(1 + 0.5 * adjusted_intensity) enhanced_image = np.array(image_pil) return enhanced_image elif filter_type == "Warm Tone": warm_image = cv2.addWeighted(image, 1.0, np.full(image.shape, (20, 66, 112), dtype=np.uint8), 0.3 * normalized_intensity, 0) return warm_image elif filter_type == "Cold Tone": cold_image = cv2.addWeighted(image, 1.0, np.full(image.shape, (112, 66, 20), dtype=np.uint8), 0.3 * normalized_intensity, 0) return cold_image elif filter_type == "High-Key": high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.3 * normalized_intensity, beta=20) return high_key elif filter_type == "Low-Key": low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.1 * normalized_intensity, beta=-10) return low_key elif filter_type == "Haze": haze = cv2.addWeighted(image, 1.0, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0) return haze else: return image def convert_to_grayscale(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR) def convert_and_save(image, filter_type, intensity): image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) filtered_image = apply_filter(image_cv, filter_type, intensity) original_image_pil = Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB)) filtered_image_pil = Image.fromarray(cv2.cvtColor(filtered_image, cv2.COLOR_BGR2RGB)) output_path = "filtered_image.jpg" filtered_image_pil.save(output_path) return [original_image_pil, filtered_image_pil], output_path def get_filter_description(filter_type): descriptions = { "Grayscale": "이미지를 흑백으로 변환합니다.", "Soft Glow": "부드러운 빛을 추가하여 이미지를 은은하게 만듭니다.", "Portrait Enhancer": "피부 톤을 균일하게 하고 선명도를 조절하여 인물을 더욱 돋보이게 만듭니다.", "Warm Tone": "따뜻한 색조를 추가하여 이미지에 온기를 더합니다.", "Cold Tone": "차가운 색조를 추가하여 이미지에 시원함을 더합니다.", "High-Key": "밝고 화사한 이미지를 만들어냅니다.", "Low-Key": "어두운 톤을 강조하여 분위기 있는 이미지를 만듭니다.", "Haze": "부드럽고 흐릿한 효과를 추가하여 몽환적인 이미지를 만듭니다." } return descriptions.get(filter_type, "") with gr.Blocks() as iface: with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="이미지 업로드") filter_input = gr.Radio( ["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"], label="필터 선택", value="Soft Glow" ) intensity_slider = gr.Slider(1, 100, value=50, label="필터 강도") description_output = gr.Markdown(get_filter_description("Soft Glow")) with gr.Column(): slider_output = ImageSlider(label="Before and After", type="pil") download_link = gr.File(label="Download Filtered Image") filter_input.change(fn=get_filter_description, inputs=filter_input, outputs=description_output) process_button = gr.Button("필터 적용") process_button.click( fn=convert_and_save, inputs=[image_input, filter_input, intensity_slider], outputs=[slider_output, download_link] ) iface.title = "인물 사진에 최적화된 필터" iface.description = "인물 사진에 최적화된 다양한 필터를 적용할 수 있습니다." iface.launch()