import gradio as gr import cv2 import numpy as np def apply_filter(image, filter_type, intensity): # 강도를 0.0에서 1.0 사이로 정규화 normalized_intensity = intensity / 100.0 if filter_type == "Grayscale": return convert_to_grayscale(image) elif filter_type == "Soft Glow": gaussian = cv2.GaussianBlur(image, (15, 15), 0) soft_glow = cv2.addWeighted(image, 1 - normalized_intensity, gaussian, normalized_intensity, 0) return soft_glow elif filter_type == "Portrait Enhancer": # 부드러운 피부 표현을 위한 필터 조합 # Step 1: Detail Enhance 사용 최소화 enhanced = cv2.detailEnhance(image, sigma_s=5, sigma_r=0.05 + 0.05 * normalized_intensity) # Step 2: Gaussian Blur 적용 (적당한 강도로) blurred = cv2.GaussianBlur(enhanced, (15, 15), 0) # Step 3: Bilateral Filter 적용 (경계 보존하면서 부드럽게) smoothed = cv2.bilateralFilter(blurred, d=9, sigmaColor=75, sigmaSpace=75) return smoothed elif filter_type == "Warm Tone": increase_red = np.array([[1.0 + 0.2 * normalized_intensity, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0 - 0.2 * normalized_intensity]]) warm_image = cv2.transform(image, increase_red) return warm_image elif filter_type == "Cold Tone": increase_blue = np.array([[1.0 - 0.2 * normalized_intensity, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0 + 0.2 * normalized_intensity]]) cold_image = cv2.transform(image, increase_blue) return cold_image elif filter_type == "High-Key": high_key = cv2.convertScaleAbs(image, alpha=1.0 + 0.2 * normalized_intensity, beta=30) return high_key elif filter_type == "Low-Key": low_key = cv2.convertScaleAbs(image, alpha=1.0 - 0.3 * normalized_intensity, beta=-30) return low_key elif filter_type == "Haze": haze = cv2.addWeighted(image, 1.0 - 0.3 * normalized_intensity, np.full(image.shape, 255, dtype=np.uint8), 0.3 * normalized_intensity, 0) return haze else: return image def convert_to_grayscale(image): gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) return gray_image def convert_and_save(image, filter_type, intensity): filtered_image = apply_filter(image, filter_type, intensity) output_path = "output.jpg" cv2.imwrite(output_path, filtered_image) return filtered_image, output_path iface = gr.Interface( fn=convert_and_save, inputs=[ "image", gr.Radio( ["Grayscale", "Soft Glow", "Portrait Enhancer", "Warm Tone", "Cold Tone", "High-Key", "Low-Key", "Haze"], label="필터 선택" ), gr.Slider(minimum=1, maximum=100, value=50, label="필터 강도") ], outputs=["image", "file"], title="이미지 필터 및 흑백 변환기", description="이미지를 업로드하고 필터와 강도를 선택하면, 변환된 이미지를 JPG 파일로 다운로드할 수 있습니다." ) iface.launch()