Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import asyncio | |
import tempfile | |
import random | |
import edge_tts | |
from streaming_stt_nemo import Model as nemo | |
import gradio as gr | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import AutoModel | |
from huggingface_hub import InferenceClient | |
import torch | |
# Set default language for speech recognition | |
default_lang = "en" | |
# Initialize speech recognition engine | |
engines = {default_lang: nemo(default_lang)} | |
# Load pre-trained models for language modeling | |
model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True) | |
# Define a function for speech-to-text transcription | |
def transcribe(audio): | |
lang = "en" | |
model = engines[lang] | |
text = model.stt_file(audio)[0] | |
return text | |
# Get Hugging Face API token | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Define a function to get the appropriate InferenceClient based on model name | |
def client_fn(model): | |
if "Nous" in model: | |
return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") | |
elif "Star" in model: | |
return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1") | |
elif "Mistral" in model: | |
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
elif "Phi" in model: | |
return InferenceClient("microsoft/Phi-3-mini-4k-instruct") | |
elif "Zephyr" in model: | |
return InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
else: | |
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
# Define a function to generate a random seed | |
def randomize_seed_fn(seed: int) -> int: | |
seed = random.randint(0, 999999) | |
return seed | |
# System instructions for the language model | |
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" | |
# Define a function for language modeling | |
def models(text, model="Mixtral 8x7B", seed=42): | |
seed = int(randomize_seed_fn(seed)) | |
generator = torch.Generator().manual_seed(seed) | |
client = client_fn(model) | |
generate_kwargs = dict( | |
max_new_tokens=512, | |
seed=seed, | |
) | |
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False | |
) | |
output = "" | |
for response in stream: | |
if not response.token.text == "</s>": | |
output += response.token.text | |
return output | |
# Define an asynchronous function to handle voice input and generate responses | |
async def respond(audio, model, seed): | |
user = transcribe(audio) | |
reply = models(user, model, seed) | |
communicate = edge_tts.Communicate(reply) | |
# Save the generated speech to a temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: | |
tmp_path = tmp_file.name | |
await communicate.save(tmp_path) | |
yield tmp_path |