import os import asyncio import tempfile import random import edge_tts from streaming_stt_nemo import Model as nemo import gradio as gr from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import AutoModel from huggingface_hub import InferenceClient import torch # Set default language for speech recognition default_lang = "en" # Initialize speech recognition engine engines = {default_lang: nemo(default_lang)} # Load pre-trained models for language modeling model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True) # Define a function for speech-to-text transcription def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text # Get Hugging Face API token HF_TOKEN = os.environ.get("HF_TOKEN", None) # Define a function to get the appropriate InferenceClient based on model name def client_fn(model): if "Nous" in model: return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") elif "Star" in model: return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1") elif "Mistral" in model: return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") elif "Phi" in model: return InferenceClient("microsoft/Phi-3-mini-4k-instruct") elif "Zephyr" in model: return InferenceClient("HuggingFaceH4/zephyr-7b-beta") else: return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") # Define a function to generate a random seed def randomize_seed_fn(seed: int) -> int: seed = random.randint(0, 999999) return seed # System instructions for the language model system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" # Define a function for language modeling def models(text, model="Mixtral 8x7B", seed=42): seed = int(randomize_seed_fn(seed)) generator = torch.Generator().manual_seed(seed) client = client_fn(model) generate_kwargs = dict( max_new_tokens=512, seed=seed, ) formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False ) output = "" for response in stream: if not response.token.text == "": output += response.token.text return output # Define an asynchronous function to handle voice input and generate responses async def respond(audio, model, seed): user = transcribe(audio) reply = models(user, model, seed) communicate = edge_tts.Communicate(reply) # Save the generated speech to a temporary file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path